Abstract
Our study used a ∼360-year fire chronosequence in northern Sweden to investigate post-fire microbial community dynamics in the boreal bryosphere (the living and dead parts of the feather moss layer on the forest floor, along with the associated biota). We anticipated systematic changes in microbial community structure and growth strategy with increasing time since fire (TSF) and used amplicon pyrosequencing to establish microbial community structure. We also recorded edaphic factors (relating to pH, C and N accumulation) and the physical characteristics of the feather moss layer. The molecular analyses revealed an unexpectedly diverse microbial community. The structure of the community could be largely explained by just two factors, TSF and pH, although the importance of TSF diminished as the forest recovered from disturbance. The microbial communities on the youngest site (TSF = 14 years) were clearly different from older locations (>100 years), suggesting relatively rapid post-fire recovery. A shift towards Proteobacterial taxa on older sites, coupled with a decline in the relative abundance of Acidobacteria, suggested an increase in resource availability with TSF. Saprotrophs dominated the fungal community. Mycorrhizal fungi appeared to decline in abundance with TSF, possibly due to changing N status. Our study provided evidence for the decadal-scale legacy of burning, with implications for boreal forests that are expected to experience more frequent burns over the course of the next century.
This is a preview of subscription content, access via your institution.




Change history
08 July 2019
The original version of this article contained an error in the Molecular Analysis subsection of the Methods.
08 July 2019
The original version of this article contained an error in the Molecular Analysis subsection of the Methods.
References
Bragina A, Berg C, Mueller H, Moser D, Berg G (2013) Insights into functional bacterial diversity and its effects on alpine bog ecosystem functioning. Scientific Rep. doi:10.1038/srep01955
Bragina A, Oberauner-Wappis L, Zachow C, Halwachs B, Thallinger GG, Mueller H, Berg G (2014) The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions. Mol Ecol 23:4498–4510. doi:10.1111/mec.12885
Jassey VEJ, Chiapusio G, Binet P, Buttler A, Laggoun-Defarge F, Delarue F, Bernard N, Mitchell EAD, Toussaint M-L, Francez A-J, Gilbert D (2013) Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Global Change Biol 19:811–823. doi:10.1111/gcb.12075
Moquin SA, Garcia JR, Brantley SL, Takacs-Vesbach CD, Shepherd UL (2012) Bacterial diversity of bryophyte-dominant biological soil crusts and associated mites. J Arid Environ 87:110–117. doi:10.1016/j.jaridenv.2012.05.004
Lindo Z, Gonzalez A (2010) The bryosphere: an integral and influential component of the Earth’s biosphere. Ecosystems 13:612–627. doi:10.1007/s10021-010-9336-3
Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuittila ES (2012) The resilience and functional role of moss in boreal and arctic ecosystems. New Phytol 196:49–67. doi:10.1111/j.1469-8137.2012.04254.x
IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409. doi:10.1639/05
Vogel JG, Gower ST (1998) Carbon and nitrogen dynamics of boreal jack pine stands with and without a green alder understory. Ecosystems 1:386–400. doi:10.1007/s100219900032
Bond-Lamberty B, Gower ST (2007) Estimation of stand-level leaf area for boreal bryophytes. Oecologia 151:584–592. doi:10.1007/s00442-006-0619-5
DeLuca TH, Zackrisson O, Nilsson M-C, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920
Nasholm T, Ekblad A, Nordin A, Giesler R, Hogberg M, Hogberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916. doi:10.1038/31921
Smith NR, Kishchuk BE, Mohn WW (2008) Effects of wildfire and harvest disturbances on forest soil bacterial communities. Appl Environ Microbiol 74:216–224. doi:10.1128/aem.01355-07
DeLuca TH, Sala A (2006) Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland northwest. Ecology 87:2511–2522. doi:10.1890/0012-9658(2006)87[2511:ffanti]2.0.co;2
Kim Y-H, Kim IS, Moon EY, Park JS, Kim S-J, Lim J-H, Park BT, Lee EJ (2011) High abundance and role of antifungal bacteria in compost-treated soils in a wildfire area. Microb Ecol 62:725–737. doi:10.1007/s00248-011-9839-2
Holden SR, Gutierrez A, Treseder KK (2013) Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16:34–46. doi:10.1007/s10021-012-9594-3
Xiang X, Shi Y, Yang J, Kong J, Lin X, Zhang H, Zeng J, Chu H (2014) Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. Scientific Rep. doi:10.1038/srep03829
LeDuc SD, Lilleskov EA, Horton TR, Rothstein DE (2013) Ectomycorrhizal fungal succession coincides with shifts in organic nitrogen availability and canopy closure in post-wildfire jack pine forests. Oecologia 172:257–269. doi:10.1007/s00442-012-2471-0
De Bellis T, Kernaghan G, Widden P (2007) Plant community influences on soil microfungal assemblages in boreal mixed-wood forests. Mycologia 99:356–367. doi:10.3852/mycologia.99.3.356
Dimitriu PA, Grayston SJ (2010) Relationship between soil properties and patterns of bacterial beta-diversity across reclaimed and natural boreal forest soils. Microb Ecol 59:563–573. doi:10.1007/s00248-009-9590-0
Sun H, Terhonen E, Koskinen K, Paulin L, Kasanen R, Asiegbu FO (2014) Bacterial diversity and community structure along different peat soils in boreal forest. Appl Soil Ecol 74:37–45. doi:10.1016/j.apsoil.2013.09.010
Kernaghan G, Patriquin G (2011) Host associations between fungal root endophytes and boreal trees. Microb Ecol 62:460–473. doi:10.1007/s00248-011-9851-6
Summerbell RC (2005) Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions. Stud Mycol 53:121–145
Cutler NA, Chaput DL, van der Gast CJ (2014) Long-term changes in soil microbial communities during primary succession. Soil Biol Biochem 69:359–370
Davey ML, Heegaard E, Halvorsen R, Ohlson M, Kauserud H (2012) Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytol 195:844–856. doi:10.1111/j.1469-8137.2012.04215.x
Osono T, Ueno T, Uchida M, Kanda H (2012) Abundance and diversity of fungi in relation to chemical changes in arctic moss profiles. Polar Scie 6:121–131. doi:10.1016/j.polar.2011.12.001
Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13:1642–1654. doi:10.1111/j.1462-2920.2011.02480.x
Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120
Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, Villarreal Ruiz L, Vasco-Palacios AM, Pham Quang T, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Poldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Paertel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K-H, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L-d, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Tan D, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science. doi:10.1126/science.1256688
Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. doi:10.1890/05-1839
Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620. doi:10.1111/j.1469-8137.2006.01936.x
Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. doi:10.1126/science.1094875
Cutler N (2011) Nutrient limitation during long-term ecosystem development inferred from a mat-forming moss. Bryologist 114:204–214
Rousk K, Rousk J, Jones DL, Zackrisson O, DeLuca TH (2013) Feather moss nitrogen acquisition across natural fertility gradients in boreal forests. Soil Biol Biochem 61:86–95. doi:10.1016/j.soilbio.2013.02.011
DeLuca TH, Zackrisson O, Gentili F, Sellstedt A, Nilsson M-C (2007) Ecosystem controls on nitrogen fixation in boreal feather moss communities. Oecologia 152:121–130. doi:10.1007/s00442-006-0626-6
Jumpponen A (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses. New Phytol 158:569–578. doi:10.1046/j.1469-8137.2003.00767.x
Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736
Peltzer DA, Wardle DA, Allison VJ, Baisden WT, Bardgett RD, Chadwick OA, Condron LM, Parfitt RL, Porder S, Richardson SJ, Turner BL, Vitousek PM, Walker J, Walker LR (2010) Understanding ecosystem retrogression. Ecol Monogr 80:509–529. doi:10.1890/09-1552.1
Vitousek P, Asner GP, Chadwick OA, Hotchkiss S (2009) Landscape-level variation in forest structure and biogeochemistry across a substrate age gradient in Hawaii. Ecology 90:3074–3086. doi:10.1890/08-0813.1
Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513. doi:10.1126/science.1098778
Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53:110–122
Schütte UME, Abdo Z, Bent SJ, Williams CJ, Schneider GM, Solheim B, Forney LJ (2009) Bacterial succession in a glacier foreland of the high arctic. ISME J 3:1258–1268
Sigler WV, Crivii S, Zeyer J (2002) Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb Ecol 44:306–316
Matthews JA (1992) The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge
DeLuca TH, Nilsson MC, Zackrisson O (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133:206–214. doi:10.1007/s00442-002-1025-2
Zackrisson O, DeLuca TH, Nilsson MC, Sellstedt A, Berglund LM (2004) Nitrogen fixation increases with successional age in boreal forests. Ecology 85:3327–3334. doi:10.1890/04-0461
Zackrisson O, Nilsson MC, Wardle DA (1996) Key ecological function of charcoal from wildfire in the boreal forest. Oikos 77:10–19. doi:10.2307/3545580
Niklasson M, Granstrom A (2000) Numbers and sizes of fires: long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81:1484–1499
Lagerstrom A, Nilsson MC, Zackrisson O, Wardle DA (2007) Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Funct Ecol 21:1027–1033. doi:10.1111/j.1365-2435.2007.01331.x
Nubel U, GarciaPichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332
Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/aem.01541-09
Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, Head IM, Read LF, Sloan WT (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6:639–U627. doi:10.1038/nmeth.1361
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Gloeckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381
Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/aem.00062-07
Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M, Aan A, Ots M, Kurina O, Ostonen I, Jogeva J, Halapuu S, Poldmaa K, Toots M, Truu J, Larsson K-H, Koljalg U (2010) PlutoF-a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evol Bioinforma 6:189–196. doi:10.4137/ebo.s6271
Nilsson RH, Veldre V, Hartmann M, Unterseher M, Amend A, Bergsten J, Kristiansson E, Ryberg M, Jumpponen A, Abarenkov K (2010) An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol 3:284–287. doi:10.1016/j.funeco.2010.05.002
Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25:38–47. doi:10.1016/j.fbr.2011.01.001
Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Hoiland K, Kjoller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Ursing BM, Vralstad T, Liimatainen K, Peintner U, Koljalg U (2010) The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol 186:281–285. doi:10.1111/j.1469-8137.2009.03160.x
Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond Ser B Biol Sci 345:101–118. doi:10.1098/rstb.1994.0091
James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning. Springer, New York
Core Team R (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Kasai K, Morinaga T, Horikoshi T (1995) Fungal succession in the early decomposition process of pine cones on the floor of Pinus densiflora forests. Mycoscience 36:325–334. doi:10.1007/bf02268608
Osono T, Trofymow JA (2012) Microfungal diversity associated with Kindbergia oregana in successional forests of British Columbia. Ecol Res 27:35–41. doi:10.1007/s11284-011-0866-8
Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge
Bergner B, Johnstone J, Treseder KK (2004) Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest. Global Change Biol 10:1996–2004. doi:10.1111/j.1365-2486.2004.00868.x
Hartmann M, Howes CG, van Insberghe D, Yu H, Bachar D, Christen R, Nilsson RH, Hallam SJ, Mohn WW (2012) Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J 6:2199–2218. doi:10.1038/ismej.2012.84
Neufeld JD, Mohn WW (2005) Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol 71:5710–5718. doi:10.1128/aem.71.10.5710-5718.2005
Kirchman DL (2012) Processes in microbial ecology. OUP, Oxford
Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453. doi:10.1038/ismej.2008.127
Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EAG (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12:1842–1854. doi:10.1111/j.1462-2920.2010.02189.x
Davey ML, Kauserud H, Ohlson M (2014) Forestry impacts on the hidden fungal biodiversity associated with bryophytes. FEMS Microbiol Ecol 90:313–325. doi:10.1111/1574-6941.12386
Treseder KK, Mack MC, Cross A (2004) Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol Appl 14:1826–1838. doi:10.1890/03-5133
Davey ML, Tsuneda A, Currah RS (2010) Saprobic and parasitic interactions of Coniochaeta velutina with mosses. Botany-Botanique 88:258–265. doi:10.1139/b10-004
Davey ML, Heegaard E, Halvorsen R, Kauserud H, Ohlson M (2013) Amplicon-pyrosequencing-based detection of compositional shifts in bryophyte-associated fungal communities along an elevation gradient. Mol Ecol 22:368–383. doi:10.1111/mec.12122
Singh P (1976) Some fungi in forest soils of Newfoundland. Mycologia 68:881–890. doi:10.2307/3758804
Slavikova E, Vadkertiova R (2000) The occurrence of yeasts in the forest soils. J Basic Microbiol 40:207–212. doi:10.1002/1521-4028(200007)40:3<207::aid-jobm207>3.3.co;2-8
Jackson BG, Nilsson M-C, Wardle DA (2013) The effects of the moss layer on the decomposition of intercepted vascular plant litter across a post-fire boreal forest chronosequence. Plant Soil 367:199–214. doi:10.1007/s11104-012-1549-0
Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages. Oxford University Press, Oxford
Hogberg MN, Hogberg P, Myrold DD (2007) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601. doi:10.1007/s00442-006-0562-5
Dumas MT (1992) Inhibition of armillaria by bacteria isolated from soils of the boreal mixedwood forest of Ontario. Eur J For Pathol 22:11–18
Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. doi:10.1126/science.1203980
Opelt K, Berg G (2004) Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the Baltic Sea coast. Appl Environ Microbiol 70:6569–6579. doi:10.1128/aem.70.11.65-69.2004
Opelt K, Chobot V, Hadacek F, Schoenmann S, Eberl L, Berg G (2007) Investigations of the structure and function of bacterial communities associated with sphagnum mosses. Environ Microbiol 9:2795–2809. doi:10.1111/j.1462-2920.2007.01391.x
Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiology Ecology 39:219–227. doi:Pii s0168-6496(01)00215-x
Shcherbakov AV, Bragina AV, Kuzmina EY, Berg C, Muntyan AN, Makarova NM, Malfanova NV, Cardinale M, Berg G, Chebotar VK, Tikhonovich IA (2013) Endophytic bacteria of Sphagnum mosses as promising objects of agricultural microbiology. Microbiology 82:306–315. doi:10.1134/s0026261713030107
Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36. doi:10.1111/j.1469-8137.2007.02191.x
Acknowledgments
We are grateful for the exhaustive comments provided by three anonymous reviewers. This work was funded by a Natural Environment Research Council (NERC) grant to T.H.D. (ref. NE/I027150/1) and grants from the Royal Geographical Society (ref. SRG 13:13) and Trinity College, Cambridge, to N.C. We are grateful to Lindsay Newbold and Anna Oliver (CEH, Wallingford, UK) for providing assistance with the molecular analysis.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Cutler, N.A., Arróniz-Crespo, M., Street, L.E. et al. Long-Term Recovery of Microbial Communities in the Boreal Bryosphere Following Fire Disturbance. Microb Ecol 73, 75–90 (2017). https://doi.org/10.1007/s00248-016-0832-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00248-016-0832-7
Keywords
- Boreal forest
- Climate change
- Microbial community structure
- Feather mosses
- Nutrient cycling
- Post-fire succession