Skip to main content

Long-Term Recovery of Microbial Communities in the Boreal Bryosphere Following Fire Disturbance

A Correction to this article was published on 08 July 2019

This article has been updated

Abstract

Our study used a ∼360-year fire chronosequence in northern Sweden to investigate post-fire microbial community dynamics in the boreal bryosphere (the living and dead parts of the feather moss layer on the forest floor, along with the associated biota). We anticipated systematic changes in microbial community structure and growth strategy with increasing time since fire (TSF) and used amplicon pyrosequencing to establish microbial community structure. We also recorded edaphic factors (relating to pH, C and N accumulation) and the physical characteristics of the feather moss layer. The molecular analyses revealed an unexpectedly diverse microbial community. The structure of the community could be largely explained by just two factors, TSF and pH, although the importance of TSF diminished as the forest recovered from disturbance. The microbial communities on the youngest site (TSF = 14 years) were clearly different from older locations (>100 years), suggesting relatively rapid post-fire recovery. A shift towards Proteobacterial taxa on older sites, coupled with a decline in the relative abundance of Acidobacteria, suggested an increase in resource availability with TSF. Saprotrophs dominated the fungal community. Mycorrhizal fungi appeared to decline in abundance with TSF, possibly due to changing N status. Our study provided evidence for the decadal-scale legacy of burning, with implications for boreal forests that are expected to experience more frequent burns over the course of the next century.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Change history

  • 08 July 2019

    The original version of this article contained an error in the Molecular Analysis subsection of the Methods.

  • 08 July 2019

    The original version of this article contained an error in the Molecular Analysis subsection of the Methods.

References

  1. Bragina A, Berg C, Mueller H, Moser D, Berg G (2013) Insights into functional bacterial diversity and its effects on alpine bog ecosystem functioning. Scientific Rep. doi:10.1038/srep01955

    Google Scholar 

  2. Bragina A, Oberauner-Wappis L, Zachow C, Halwachs B, Thallinger GG, Mueller H, Berg G (2014) The Sphagnum microbiome supports bog ecosystem functioning under extreme conditions. Mol Ecol 23:4498–4510. doi:10.1111/mec.12885

    Article  CAS  PubMed  Google Scholar 

  3. Jassey VEJ, Chiapusio G, Binet P, Buttler A, Laggoun-Defarge F, Delarue F, Bernard N, Mitchell EAD, Toussaint M-L, Francez A-J, Gilbert D (2013) Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions. Global Change Biol 19:811–823. doi:10.1111/gcb.12075

    Article  Google Scholar 

  4. Moquin SA, Garcia JR, Brantley SL, Takacs-Vesbach CD, Shepherd UL (2012) Bacterial diversity of bryophyte-dominant biological soil crusts and associated mites. J Arid Environ 87:110–117. doi:10.1016/j.jaridenv.2012.05.004

    Article  Google Scholar 

  5. Lindo Z, Gonzalez A (2010) The bryosphere: an integral and influential component of the Earth’s biosphere. Ecosystems 13:612–627. doi:10.1007/s10021-010-9336-3

    Article  Google Scholar 

  6. Turetsky MR, Bond-Lamberty B, Euskirchen E, Talbot J, Frolking S, McGuire AD, Tuittila ES (2012) The resilience and functional role of moss in boreal and arctic ecosystems. New Phytol 196:49–67. doi:10.1111/j.1469-8137.2012.04254.x

    Article  CAS  PubMed  Google Scholar 

  7. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  8. Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409. doi:10.1639/05

    Article  Google Scholar 

  9. Vogel JG, Gower ST (1998) Carbon and nitrogen dynamics of boreal jack pine stands with and without a green alder understory. Ecosystems 1:386–400. doi:10.1007/s100219900032

    Article  CAS  Google Scholar 

  10. Bond-Lamberty B, Gower ST (2007) Estimation of stand-level leaf area for boreal bryophytes. Oecologia 151:584–592. doi:10.1007/s00442-006-0619-5

    Article  PubMed  Google Scholar 

  11. DeLuca TH, Zackrisson O, Nilsson M-C, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920

    Article  CAS  PubMed  Google Scholar 

  12. Nasholm T, Ekblad A, Nordin A, Giesler R, Hogberg M, Hogberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916. doi:10.1038/31921

    Article  CAS  Google Scholar 

  13. Smith NR, Kishchuk BE, Mohn WW (2008) Effects of wildfire and harvest disturbances on forest soil bacterial communities. Appl Environ Microbiol 74:216–224. doi:10.1128/aem.01355-07

    Article  CAS  PubMed  Google Scholar 

  14. DeLuca TH, Sala A (2006) Frequent fire alters nitrogen transformations in ponderosa pine stands of the inland northwest. Ecology 87:2511–2522. doi:10.1890/0012-9658(2006)87[2511:ffanti]2.0.co;2

    Article  PubMed  Google Scholar 

  15. Kim Y-H, Kim IS, Moon EY, Park JS, Kim S-J, Lim J-H, Park BT, Lee EJ (2011) High abundance and role of antifungal bacteria in compost-treated soils in a wildfire area. Microb Ecol 62:725–737. doi:10.1007/s00248-011-9839-2

    Article  PubMed  Google Scholar 

  16. Holden SR, Gutierrez A, Treseder KK (2013) Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16:34–46. doi:10.1007/s10021-012-9594-3

    Article  CAS  Google Scholar 

  17. Xiang X, Shi Y, Yang J, Kong J, Lin X, Zhang H, Zeng J, Chu H (2014) Rapid recovery of soil bacterial communities after wildfire in a Chinese boreal forest. Scientific Rep. doi:10.1038/srep03829

    Google Scholar 

  18. LeDuc SD, Lilleskov EA, Horton TR, Rothstein DE (2013) Ectomycorrhizal fungal succession coincides with shifts in organic nitrogen availability and canopy closure in post-wildfire jack pine forests. Oecologia 172:257–269. doi:10.1007/s00442-012-2471-0

    Article  PubMed  Google Scholar 

  19. De Bellis T, Kernaghan G, Widden P (2007) Plant community influences on soil microfungal assemblages in boreal mixed-wood forests. Mycologia 99:356–367. doi:10.3852/mycologia.99.3.356

    Article  PubMed  Google Scholar 

  20. Dimitriu PA, Grayston SJ (2010) Relationship between soil properties and patterns of bacterial beta-diversity across reclaimed and natural boreal forest soils. Microb Ecol 59:563–573. doi:10.1007/s00248-009-9590-0

    Article  PubMed  Google Scholar 

  21. Sun H, Terhonen E, Koskinen K, Paulin L, Kasanen R, Asiegbu FO (2014) Bacterial diversity and community structure along different peat soils in boreal forest. Appl Soil Ecol 74:37–45. doi:10.1016/j.apsoil.2013.09.010

    Article  Google Scholar 

  22. Kernaghan G, Patriquin G (2011) Host associations between fungal root endophytes and boreal trees. Microb Ecol 62:460–473. doi:10.1007/s00248-011-9851-6

    Article  PubMed  Google Scholar 

  23. Summerbell RC (2005) Root endophyte and mycorrhizosphere fungi of black spruce, Picea mariana, in a boreal forest habitat: influence of site factors on fungal distributions. Stud Mycol 53:121–145

    Article  Google Scholar 

  24. Cutler NA, Chaput DL, van der Gast CJ (2014) Long-term changes in soil microbial communities during primary succession. Soil Biol Biochem 69:359–370

    Article  CAS  Google Scholar 

  25. Davey ML, Heegaard E, Halvorsen R, Ohlson M, Kauserud H (2012) Seasonal trends in the biomass and structure of bryophyte-associated fungal communities explored by 454 pyrosequencing. New Phytol 195:844–856. doi:10.1111/j.1469-8137.2012.04215.x

    Article  CAS  PubMed  Google Scholar 

  26. Osono T, Ueno T, Uchida M, Kanda H (2012) Abundance and diversity of fungi in relation to chemical changes in arctic moss profiles. Polar Scie 6:121–131. doi:10.1016/j.polar.2011.12.001

    Article  Google Scholar 

  27. Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13:1642–1654. doi:10.1111/j.1462-2920.2011.02480.x

    Article  PubMed  Google Scholar 

  28. Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesundera R, Villarreal Ruiz L, Vasco-Palacios AM, Pham Quang T, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Poldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Paertel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson K-H, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo L-d, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Tan D, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science. doi:10.1126/science.1256688

    PubMed  Google Scholar 

  30. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88:1354–1364. doi:10.1890/05-1839

    Article  PubMed  Google Scholar 

  31. Lindahl BD, Ihrmark K, Boberg J, Trumbore SE, Hogberg P, Stenlid J, Finlay RD (2007) Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol 173:611–620. doi:10.1111/j.1469-8137.2006.01936.x

    Article  CAS  PubMed  Google Scholar 

  32. Wardle DA, Bardgett RD, Klironomos JN, Setala H, van der Putten WH, Wall DH (2004) Ecological linkages between aboveground and belowground biota. Science 304:1629–1633. doi:10.1126/science.1094875

    Article  CAS  PubMed  Google Scholar 

  33. Cutler N (2011) Nutrient limitation during long-term ecosystem development inferred from a mat-forming moss. Bryologist 114:204–214

    Article  Google Scholar 

  34. Rousk K, Rousk J, Jones DL, Zackrisson O, DeLuca TH (2013) Feather moss nitrogen acquisition across natural fertility gradients in boreal forests. Soil Biol Biochem 61:86–95. doi:10.1016/j.soilbio.2013.02.011

    Article  CAS  Google Scholar 

  35. DeLuca TH, Zackrisson O, Gentili F, Sellstedt A, Nilsson M-C (2007) Ecosystem controls on nitrogen fixation in boreal feather moss communities. Oecologia 152:121–130. doi:10.1007/s00442-006-0626-6

    Article  PubMed  Google Scholar 

  36. Jumpponen A (2003) Soil fungal community assembly in a primary successional glacier forefront ecosystem as inferred from rDNA sequence analyses. New Phytol 158:569–578. doi:10.1046/j.1469-8137.2003.00767.x

    Article  Google Scholar 

  37. Walker LR, Wardle DA, Bardgett RD, Clarkson BD (2010) The use of chronosequences in studies of ecological succession and soil development. J Ecol 98:725–736

    Article  Google Scholar 

  38. Peltzer DA, Wardle DA, Allison VJ, Baisden WT, Bardgett RD, Chadwick OA, Condron LM, Parfitt RL, Porder S, Richardson SJ, Turner BL, Vitousek PM, Walker J, Walker LR (2010) Understanding ecosystem retrogression. Ecol Monogr 80:509–529. doi:10.1890/09-1552.1

    Article  Google Scholar 

  39. Vitousek P, Asner GP, Chadwick OA, Hotchkiss S (2009) Landscape-level variation in forest structure and biogeochemistry across a substrate age gradient in Hawaii. Ecology 90:3074–3086. doi:10.1890/08-0813.1

    Article  PubMed  Google Scholar 

  40. Wardle DA, Walker LR, Bardgett RD (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513. doi:10.1126/science.1098778

    Article  CAS  PubMed  Google Scholar 

  41. Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2007) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53:110–122

    Article  PubMed  Google Scholar 

  42. Schütte UME, Abdo Z, Bent SJ, Williams CJ, Schneider GM, Solheim B, Forney LJ (2009) Bacterial succession in a glacier foreland of the high arctic. ISME J 3:1258–1268

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sigler WV, Crivii S, Zeyer J (2002) Bacterial succession in glacial forefield soils characterized by community structure, activity and opportunistic growth dynamics. Microb Ecol 44:306–316

    Article  CAS  PubMed  Google Scholar 

  44. Matthews JA (1992) The ecology of recently-deglaciated terrain: a geoecological approach to glacier forelands and primary succession. Cambridge University Press, Cambridge

    Google Scholar 

  45. DeLuca TH, Nilsson MC, Zackrisson O (2002) Nitrogen mineralization and phenol accumulation along a fire chronosequence in northern Sweden. Oecologia 133:206–214. doi:10.1007/s00442-002-1025-2

    Article  Google Scholar 

  46. Zackrisson O, DeLuca TH, Nilsson MC, Sellstedt A, Berglund LM (2004) Nitrogen fixation increases with successional age in boreal forests. Ecology 85:3327–3334. doi:10.1890/04-0461

    Article  Google Scholar 

  47. Zackrisson O, Nilsson MC, Wardle DA (1996) Key ecological function of charcoal from wildfire in the boreal forest. Oikos 77:10–19. doi:10.2307/3545580

    Article  Google Scholar 

  48. Niklasson M, Granstrom A (2000) Numbers and sizes of fires: long-term spatially explicit fire history in a Swedish boreal landscape. Ecology 81:1484–1499

    Article  Google Scholar 

  49. Lagerstrom A, Nilsson MC, Zackrisson O, Wardle DA (2007) Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Funct Ecol 21:1027–1033. doi:10.1111/j.1365-2435.2007.01331.x

    Article  Google Scholar 

  50. Nubel U, GarciaPichel F, Muyzer G (1997) PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl Environ Microbiol 63:3327–3332

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/aem.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, Head IM, Read LF, Sloan WT (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6:639–U627. doi:10.1038/nmeth.1361

    Article  CAS  PubMed  Google Scholar 

  53. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Gloeckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219

    Article  CAS  PubMed  Google Scholar 

  54. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/aem.00062-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Abarenkov K, Tedersoo L, Nilsson RH, Vellak K, Saar I, Veldre V, Parmasto E, Prous M, Aan A, Ots M, Kurina O, Ostonen I, Jogeva J, Halapuu S, Poldmaa K, Toots M, Truu J, Larsson K-H, Koljalg U (2010) PlutoF-a web based workbench for ecological and taxonomic research, with an online implementation for fungal ITS sequences. Evol Bioinforma 6:189–196. doi:10.4137/ebo.s6271

    Google Scholar 

  57. Nilsson RH, Veldre V, Hartmann M, Unterseher M, Amend A, Bergsten J, Kristiansson E, Ryberg M, Jumpponen A, Abarenkov K (2010) An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology. Fungal Ecol 3:284–287. doi:10.1016/j.funeco.2010.05.002

    Article  Google Scholar 

  58. Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fungal Biol Rev 25:38–47. doi:10.1016/j.fbr.2011.01.001

    Article  Google Scholar 

  59. Abarenkov K, Nilsson RH, Larsson K-H, Alexander IJ, Eberhardt U, Erland S, Hoiland K, Kjoller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Ursing BM, Vralstad T, Liimatainen K, Peintner U, Koljalg U (2010) The UNITE database for molecular identification of fungi - recent updates and future perspectives. New Phytol 186:281–285. doi:10.1111/j.1469-8137.2009.03160.x

    Article  PubMed  Google Scholar 

  60. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond Ser B Biol Sci 345:101–118. doi:10.1098/rstb.1994.0091

    Article  CAS  Google Scholar 

  61. James G, Witten D, Hastie T, Tibshirani R (2013) An introduction to statistical learning. Springer, New York

    Book  Google Scholar 

  62. Core Team R (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  63. Kasai K, Morinaga T, Horikoshi T (1995) Fungal succession in the early decomposition process of pine cones on the floor of Pinus densiflora forests. Mycoscience 36:325–334. doi:10.1007/bf02268608

    Article  Google Scholar 

  64. Osono T, Trofymow JA (2012) Microfungal diversity associated with Kindbergia oregana in successional forests of British Columbia. Ecol Res 27:35–41. doi:10.1007/s11284-011-0866-8

    Article  Google Scholar 

  65. Walker LR, del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  66. Bergner B, Johnstone J, Treseder KK (2004) Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest. Global Change Biol 10:1996–2004. doi:10.1111/j.1365-2486.2004.00868.x

    Article  Google Scholar 

  67. Hartmann M, Howes CG, van Insberghe D, Yu H, Bachar D, Christen R, Nilsson RH, Hallam SJ, Mohn WW (2012) Significant and persistent impact of timber harvesting on soil microbial communities in Northern coniferous forests. ISME J 6:2199–2218. doi:10.1038/ismej.2012.84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Neufeld JD, Mohn WW (2005) Unexpectedly high bacterial diversity in arctic tundra relative to boreal forest soils, revealed by serial analysis of ribosomal sequence tags. Appl Environ Microbiol 71:5710–5718. doi:10.1128/aem.71.10.5710-5718.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kirchman DL (2012) Processes in microbial ecology. OUP, Oxford

    Google Scholar 

  70. Jones RT, Robeson MS, Lauber CL, Hamady M, Knight R, Fierer N (2009) A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses. ISME J 3:442–453. doi:10.1038/ismej.2008.127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Campbell BJ, Polson SW, Hanson TE, Mack MC, Schuur EAG (2010) The effect of nutrient deposition on bacterial communities in Arctic tundra soil. Environ Microbiol 12:1842–1854. doi:10.1111/j.1462-2920.2010.02189.x

    Article  CAS  PubMed  Google Scholar 

  72. Davey ML, Kauserud H, Ohlson M (2014) Forestry impacts on the hidden fungal biodiversity associated with bryophytes. FEMS Microbiol Ecol 90:313–325. doi:10.1111/1574-6941.12386

    Article  CAS  PubMed  Google Scholar 

  73. Treseder KK, Mack MC, Cross A (2004) Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol Appl 14:1826–1838. doi:10.1890/03-5133

    Article  Google Scholar 

  74. Davey ML, Tsuneda A, Currah RS (2010) Saprobic and parasitic interactions of Coniochaeta velutina with mosses. Botany-Botanique 88:258–265. doi:10.1139/b10-004

    Article  CAS  Google Scholar 

  75. Davey ML, Heegaard E, Halvorsen R, Kauserud H, Ohlson M (2013) Amplicon-pyrosequencing-based detection of compositional shifts in bryophyte-associated fungal communities along an elevation gradient. Mol Ecol 22:368–383. doi:10.1111/mec.12122

    Article  CAS  PubMed  Google Scholar 

  76. Singh P (1976) Some fungi in forest soils of Newfoundland. Mycologia 68:881–890. doi:10.2307/3758804

    Article  Google Scholar 

  77. Slavikova E, Vadkertiova R (2000) The occurrence of yeasts in the forest soils. J Basic Microbiol 40:207–212. doi:10.1002/1521-4028(200007)40:3<207::aid-jobm207>3.3.co;2-8

    Article  CAS  PubMed  Google Scholar 

  78. Jackson BG, Nilsson M-C, Wardle DA (2013) The effects of the moss layer on the decomposition of intercepted vascular plant litter across a post-fire boreal forest chronosequence. Plant Soil 367:199–214. doi:10.1007/s11104-012-1549-0

    Article  CAS  Google Scholar 

  79. Bardgett RD, Wardle DA (2010) Aboveground-belowground linkages. Oxford University Press, Oxford

    Google Scholar 

  80. Hogberg MN, Hogberg P, Myrold DD (2007) Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three? Oecologia 150:590–601. doi:10.1007/s00442-006-0562-5

    Article  PubMed  Google Scholar 

  81. Dumas MT (1992) Inhibition of armillaria by bacteria isolated from soils of the boreal mixedwood forest of Ontario. Eur J For Pathol 22:11–18

    Article  Google Scholar 

  82. Mendes R, Kruijt M, de Bruijn I, Dekkers E, van der Voort M, Schneider JHM, Piceno YM, DeSantis TZ, Andersen GL, Bakker PAHM, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332:1097–1100. doi:10.1126/science.1203980

    Article  CAS  PubMed  Google Scholar 

  83. Opelt K, Berg G (2004) Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the Baltic Sea coast. Appl Environ Microbiol 70:6569–6579. doi:10.1128/aem.70.11.65-69.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Opelt K, Chobot V, Hadacek F, Schoenmann S, Eberl L, Berg G (2007) Investigations of the structure and function of bacterial communities associated with sphagnum mosses. Environ Microbiol 9:2795–2809. doi:10.1111/j.1462-2920.2007.01391.x

    Article  CAS  PubMed  Google Scholar 

  85. Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root-fungus interactions and plant growth. FEMS Microbiology Ecology 39:219–227. doi:Pii s0168-6496(01)00215-x

  86. 10.1111/j.1574-6941.2002.tb00924.x

  87. Shcherbakov AV, Bragina AV, Kuzmina EY, Berg C, Muntyan AN, Makarova NM, Malfanova NV, Cardinale M, Berg G, Chebotar VK, Tikhonovich IA (2013) Endophytic bacteria of Sphagnum mosses as promising objects of agricultural microbiology. Microbiology 82:306–315. doi:10.1134/s0026261713030107

    Article  CAS  Google Scholar 

  88. Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36. doi:10.1111/j.1469-8137.2007.02191.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the exhaustive comments provided by three anonymous reviewers. This work was funded by a Natural Environment Research Council (NERC) grant to T.H.D. (ref. NE/I027150/1) and grants from the Royal Geographical Society (ref. SRG 13:13) and Trinity College, Cambridge, to N.C. We are grateful to Lindsay Newbold and Anna Oliver (CEH, Wallingford, UK) for providing assistance with the molecular analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nick A. Cutler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 43 kb)

ESM 2

(PDF 86 kb)

ESM 3

(PDF 60 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cutler, N.A., Arróniz-Crespo, M., Street, L.E. et al. Long-Term Recovery of Microbial Communities in the Boreal Bryosphere Following Fire Disturbance. Microb Ecol 73, 75–90 (2017). https://doi.org/10.1007/s00248-016-0832-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0832-7

Keywords

  • Boreal forest
  • Climate change
  • Microbial community structure
  • Feather mosses
  • Nutrient cycling
  • Post-fire succession