Skip to main content
Log in

Microbial Succession and Nitrogen Cycling in Cultured Biofilms as Affected by the Inorganic Nitrogen Availability

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 14 September 2016

Abstract

Biofilms play important roles in nutrients and energy cycling in aquatic ecosystems. We hypothesized that as eutrophication could change phytoplankton community and decrease phytoplankton diversity, ambient inorganic nitrogen level will affect the microbial community and diversity of biofilms and the roles of biofilms in nutrient cycling. Biofilms were cultured using a flow incubator either with replete inorganic nitrogen (N-rep) or without exogenous inorganic nitrogen supply (N-def). The results showed that the biomass and nitrogen and phosphorous accumulation of biofilms were limited by N deficiency; however, as expected, the N-def biofilms had significantly higher microbial diversity than that of N-rep biofilms. The microbial community of biofilms shifted in composition and abundance in response to ambient inorganic nitrogen level. For example, as compared between the N-def and the N-rep biofilms, the former consisted of more diazotrophs, while the latter consisted of more denitrifying bacteria. As a result of the shift of the functional microbial community, the N concentration of N-rep medium kept decreasing, while that of N-def medium showed an increasing trend in the late stage. This indicates that biofilms can serve as the source or the sink of nitrogen in aquatic ecosystems, and it depends on the inorganic nitrogen availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Di Pippo F, Bohn A, Congestri R, De Philippis R, Albertano P (2009) Capsular polysaccharides of cultured phototrophic biofilms. Biofouling 25(6):495–504

    Article  CAS  PubMed  Google Scholar 

  2. Lock M, Wallace R, Costerton J, Ventullo R, Charlton S (1984) River epilithon: toward a structural-functional model. Oikos 42(1):10–22

  3. Battin TJ, Kaplan LA, Newbold JD, Hansen CM (2003) Contributions of microbial biofilms to ecosystem processes in stream mesocosms. Nature 426(6965):439–442

    Article  CAS  PubMed  Google Scholar 

  4. Guzzon A, Bohn A, Diociaiuti M, Albertano P (2008a) Cultured phototrophic biofilms for phosphorus removal in wastewater treatment. Water Res. 42(16):4357–4367

    Article  CAS  PubMed  Google Scholar 

  5. Chávez-Crooker P, Obreque-Contreras J (2010) Bioremediation of aquaculture wastes. Curr. Opin. Biotechnol. 21(3):313–317

    Article  PubMed  Google Scholar 

  6. Bender J, Phillips P (2004) Microbial mats for multiple applications in aquaculture and bioremediation. Bioresour. Technol. 94(3):229–238

    Article  CAS  PubMed  Google Scholar 

  7. Schumacher G, Blume T, Sekoulov I (2003) Bacteria reduction and nutrient removal in small wastewater treatment plants by an algal biofilm. Water Sci. Technol. 47(11):195–202

    CAS  PubMed  Google Scholar 

  8. Vymazal J, Sldeek V, Stach J (2001) Biota participating in wastewater treatment in a horizontal flow constructed wetland. Water Sci. Technol. 44(11–12):211–214

    CAS  PubMed  Google Scholar 

  9. Bhadury P, Wright PC (2004) Exploitation of marine algae: biogenic compounds for potential antifouling applications. Planta 219(4):561–578

    Article  CAS  PubMed  Google Scholar 

  10. Patil JS, Anil AC (2005) Biofilm diatom community structure: influence of temporal and substratum variability. Biofouling 21(3–4):189–206

    Article  CAS  PubMed  Google Scholar 

  11. Yang C, Chen H, Zeng G, Yu G, Luo S (2010) Biomass accumulation and control strategies in gas biofiltration. Biotechnol. Adv. 28(4):531–540

    Article  CAS  PubMed  Google Scholar 

  12. Gruber N, Galloway JN (2008) An earth-system perspective of the global nitrogen cycle. Nature 451(7176):293–296

    Article  CAS  PubMed  Google Scholar 

  13. Francis CA, Beman JM, Kuypers MM (2007) New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J 1(1):19–27

    Article  CAS  PubMed  Google Scholar 

  14. Zehr JP, Kudela RM (2011) Nitrogen cycle of the open ocean: from genes to ecosystems. Ann Rev Mar Sci 3:197–225

    Article  PubMed  Google Scholar 

  15. Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive Earth’s biogeochemical cycles. Science 320(5879):1034–1039

    Article  CAS  PubMed  Google Scholar 

  16. Vitousek PM, Cassman K, Cleveland C, Crews T, Field CB, Grimm NB, Howarth RW, Marino R, Martinelli L, Rastetter EB (2002) Towards an ecological understanding of biological nitrogen fixation. Biogeochemistry 57(1):1–45

    Article  Google Scholar 

  17. Revsbech NP, Risgaard-Petersen N, Schramm A, Nielsen LP (2006) Nitrogen transformations in stratified aquatic microbial ecosystems. Anton Leeuw. Int. J. G. 90(4):361–375

    Article  CAS  Google Scholar 

  18. Howarth RW, Marino R, Lane J, Cole JJ (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance1. Limnol. Oceanogr. 33(4part2):669–687

    Article  CAS  Google Scholar 

  19. Pérez-Martínez C, Sánchez-Castillo P, Jiménez-Pérez MV (2010) Utilization of immobilized benthic algal species for N and P removal. J. Appl. Phycol. 22(3):277–282

    Article  Google Scholar 

  20. Romani A, Guasch H, Munoz I, Ruana J, Vilalta E, Schwartz T, Emtiazi F, Sabater S (2004) Biofilm structure and function and possible implications for riverine DOC dynamics. Microb. Ecol. 47(4):316–328

    Article  CAS  PubMed  Google Scholar 

  21. Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM (1994) Declining biodiversity can alter the performance of ecosystems. Nature 368(6473):734–737

    Article  Google Scholar 

  22. Chenier MR, Beaumier D, Roy R, Driscoll BT, Lawrence JR, Greer CW (2003) Impact of seasonal variations and nutrient inputs on nitrogen cycling and degradation of hexadecane by replicated river biofilms. Appl. Environ. Microbiol. 69(9):5170–5177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Knelman JE, Legg TM, O’Neill SP, Washenberger CL, González A, Cleveland CC, Nemergut DR (2012) Bacterial community structure and function change in association with colonizer plants during early primary succession in a glacier forefield. Soil Biol. Biochem. 46:172–180

    Article  CAS  Google Scholar 

  24. Tilman D (1996) Biodiversity: population versus ecosystem stability. Ecology 77(2):350–36325

    Article  Google Scholar 

  25. Biggs BJ, Smith RA (2002) Taxonomic richness of stream benthic algae: effects of flood disturbance and nutrients. Limnol. Oceanogr. 47(4):1175–1186

  26. Luo J, Liang H, Yan L, Ma J, Yang Y, Li G (2013) Microbial community structures in a closed raw water distribution system biofilm as revealed by 454-pyrosequencing analysis and the effect of microbial biofilm communities on raw water quality. Bioresour. Technol. 148:189–195

    Article  CAS  PubMed  Google Scholar 

  27. Douterelo I, Sharpe R, Boxall J (2013) Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. Water Res. 47(2):503–516

    Article  CAS  PubMed  Google Scholar 

  28. Guzzon A, Congestri R, Albertano P (2005) Light-induced changes in photosynthesis and structure of cyanobacterial cultured biofilms from an Italian wastewater treatment plant. Algol. Stud. 117(1):223–238

    Article  Google Scholar 

  29. Zippel B, Rijstenbil J, Neu TR (2007) A flow-lane incubator for studying freshwater and marine phototrophic biofilms. J. Microbiol. Methods 70(2):336–345

    Article  CAS  PubMed  Google Scholar 

  30. Li S, Wang C, Qin H, Li Y, Zheng J, Peng C, Li D (2016) Influence of phosphorus availability on the community structure and physiology of cultured biofilms. J. Environ. Sci. 42:19–31

  31. Beakes GW, Canter HM, Jaworski GH (1988) Zoospore ultrastructure of Zygorhizidium affluens and Z. planktonicum, two chytrids parasitizing the diatom Asterionella formosa. Can. J. Bot. 66(6):1054–1067

    Article  Google Scholar 

  32. Arar EJ (1997) Method 446.0: in vitro determination of chlorophylls a, b, c1+ c2 and pheopigments in marine and freshwater algae by visible spectrophotometry. United States Environmental Protection Agency, Office of Research and Development, National Exposure Research Laboratory

  33. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 27:31–36

    Article  CAS  Google Scholar 

  34. APHA (1998) Standard methods for the examination of water and wastewater. American Public Health Association American Water Works Association and World Environment Federation 20th Edition, Washington DC

  35. Tamaki H, Wright CL, Li X, Lin Q, Hwang C, Wang S, Thimmapuram J, Kamagata Y, Liu W-T (2011) Analysis of 16S rRNA amplicon sequencing options on the Roche/454 next-generation titanium sequencing platform. PLoS One 6(9):e25263

  36. Peterson CG, Grimm NB (1992) Temporal variation in enrichment effects during periphyton succession in a nitrogen-limited desert stream ecosystem. J. N. Am. Benthol. Soc. 11(1):20–36

    Article  Google Scholar 

  37. Stoodley P, Dodds I, Boyle J, Lappin-Scott H (1999) Influence of hydrodynamics and nutrients on biofilm structure. J. Appl. Microbiol. 85:19S–28S

    Article  Google Scholar 

  38. Peter H, Beier S, Bertilsson S, Lindström ES, Langenheder S, Tranvik LJ (2011) Function-specific response to depletion of microbial diversity. ISME J 5(2):351–361

    Article  CAS  PubMed  Google Scholar 

  39. Lu L, Xing D, Ren N (2012) Pyrosequencing reveals highly diverse microbial communities in microbial electrolysis cells involved in enhanced H2 production from waste activated sludge. Water Res. 46(7):2425–2434

    Article  CAS  PubMed  Google Scholar 

  40. Wittebolle L, Marzorati M, Clement L, Balloi A, Daffonchio D, Heylen K, De Vos P, Verstraete W, Boon N (2009) Initial community evenness favours functionality under selective stress. Nature 458(7238):623–626

    Article  CAS  PubMed  Google Scholar 

  41. Yao M, Rui J, Li J, Dai Y, Bai Y, Heděnec P, Wang J, Zhang S, Pei K, Liu C (2014) Rate-specific responses of prokaryotic diversity and structure to nitrogen deposition in the Leymus chinensis steppe. Soil Biol. Biochem. 79:81–90

    Article  CAS  Google Scholar 

  42. Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp PJ, Vacelet J, Webster N, Hentschel U, Taylor MW (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6(3):564–576

  43. Li YF, Chen YR, Yang JL, Bao WY, Guo XP, Liang X, Shi ZY, Li JL, Ding DW (2014) Effects of substratum type on bacterial community structure in biofilms in relation to settlement of plantigrades of the mussel Mytilus coruscus. Int. Biodeterior. Biodegrad. 96:41–49

  44. Gao C, Wang A, Wu WM, Yin Y, Zhao YG (2014a) Enrichment of anodic biofilm inoculated with anaerobic or aerobic sludge in single chambered air-cathode microbial fuel cells. Bioresour. Technol. 167:124–132

  45. Brasell KA, Heath MW, Ryan KG, Wood SA (2015) Successional change in microbial communities of benthic Phormidium-dominated biofilms. Microb. Ecol. 69(2):254–266

  46. Roeselers G, Van Loosdrecht M, Muyzer G (2007) Heterotrophic pioneers facilitate phototrophic biofilm development. Microb. Ecol. 54(3):578–585

  47. Wang J, Bao JT, Li XR, Liu YB (2015) Molecular ecology of nifH genes and transcripts along a chronosequence in revegetated areas of the Tengger Desert. Microbial Ecol 71(1):1–14

  48. Gao D-W, Wen Z-D, Li B, Liang H (2014b) Microbial community structure characteristics associated membrane fouling in A/O-MBR system. Bioresour. Technol. 154:87–93

  49. Curtis T, Sloan W (2006) Towards the design of diversity: stochastic models for community assembly in wastewater treatment plants. Water Sci. Technol. 54(1):227–236

    Article  CAS  PubMed  Google Scholar 

  50. Zhang T, Shao M-F, Ye L (2012) 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6(6):1137–1147

    Article  CAS  PubMed  Google Scholar 

  51. Jackson CR, Churchill PF, Roden EE (2001) Successional changes in bacterial assemblage structure during epilithic biofilm development. Ecology 82(2):555–566

    Article  Google Scholar 

  52. Atabek A, Camesano TA (2007) Atomic force microscopy study of the effect of lipopolysaccharides and extracellular polymers on adhesion of Pseudomonas Aeruginosa. J. Bacteriol. 189(23):8503–8509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhu Y, Zhang Y, Ren H, Geng J, Xu K, Huang H, Ding L (2015) Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor. Bioresour. Technol. 180:345–351

    Article  CAS  PubMed  Google Scholar 

  54. Boon N, Goris J, De Vos P, Verstraete W, Top EM (2001) Genetic diversity among 3-chloroaniline-and aniline-degrading strains of the Comamonadaceae. Appl. Environ. Microbiol. 67(3):1107–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Beaulieu M, Becaert V, Deschenes L, Villemur R (2000) Evolution of bacterial diversity during enrichment of PCP-degrading activated soils. Microb. Ecol. 40(4):345–355

    CAS  PubMed  Google Scholar 

  56. Vishnivetskaya TA, Kathariou S, Tiedje JM (2009) The Exiguobacterium genus: biodiversity and biogeography. Extremophiles 13(3):541–555

  57. Jeswani H, Mukherji S (2013) Batch studies with Exiguobacterium aurantiacum degrading structurally diverse organic compounds and its potential for treatment of biomass gasification wastewater. Int. Biodeterior. Biodegrad. 80:1–9

  58. Ishii S, Yamamoto M, Kikuchi M, Oshima K, Hattori M, Otsuka S, Senoo K (2009) Microbial populations responsive to denitrification-inducing conditions in rice paddy soil, as revealed by comparative 16S rRNA gene analysis. Appl. Environ. Microbiol. 75(22):7070–7078

  59. Liang Y, Li D, Zhang X, Zeng H, Yang Z, Zhang J (2014) Microbial characteristics and nitrogen removal of simultaneous partial nitrification, anammox and denitrification (SNAD) process treating low C/N ratio sewage. Bioresour. Technol. 169:103–109

    Article  CAS  PubMed  Google Scholar 

  60. Stewart WD, Lex M (1970) Nitrogenase activity in the blue-green alga Plectonema boryanum strain 594. Arch. Mikrobiol. 73(3):250–260

    Article  CAS  PubMed  Google Scholar 

  61. Li Z, Brand J (2007) Leptolyngbya nodulosa sp. nov.(Oscillatoriaceae), a subtropical marine cyanobacterium that produces a unique multicellular structure. Phycologia 46(4):396–401

  62. Sarkar A, Manjunath K, Vishwakarma P (2014) Diversity of diazotrophs in tropical rice field under the influence of organic and nitrogen fertilization. Indian J. Biotechnol. 13(4):540–543

  63. Schütz K, Happe T, Troshina O, Lindblad P, Leitão E, Oliveira P, Tamagnini P (2004) Cyanobacterial H2 production—a comparative analysis. Planta 218(3):350–359

  64. Moisander PH, Shiue L, Steward GF, Jenkins BD, Bebout BM, Zehr JP (2006) Application of a nifH oligonucleotide microarray for profiling diversity of N2-fixing microorganisms in marine microbial mats. Environ. Microbiol. 8(10):1721–1735

    Article  CAS  PubMed  Google Scholar 

  65. Charpy L, Palinska KA, Casareto B, Langlade MJ, Suzuki Y, Abed RM, Golubic S (2010) Dinitrogen-fixing cyanobacteria in microbial mats of two shallow coral reef ecosystems. Microb. Ecol. 59(1):174–186

    Article  CAS  PubMed  Google Scholar 

  66. Hou S, Zhou F, Peng S, Gao H, Xu X (2015) The HetR-binding site that activates expression of patA in vegetative cells is required for normal heterocyst patterning in Anabaena sp. PCC 7120. Sci. Bull. 60(2):192–210

  67. Bergman B, Gallon J, Rai A, Stal L (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol. Rev. 19(3):139–185

    Article  CAS  Google Scholar 

  68. Belnap J (1996) Soil surface disturbances in cold deserts: effects on nitrogenase activity in cyanobacterial-lichen soil crusts. Biol. Fertil. Soils 23(4):362–367

    Article  CAS  Google Scholar 

  69. Dron A, Rabouille S, Claquin P, Le Roy B, Talec A, Sciandra A (2012) Light–dark (12: 12) cycle of carbon and nitrogen metabolism in Crocosphaera watsonii WH8501: relation to the cell cycle. Environ. Microbiol. 14(4):967–981

  70. Brauer VS, Stomp M, Rosso C, van Beusekom SA, Emmerich B, Stal LJ, Huisman J (2013) Low temperature delays timing and enhances the cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece. ISME J 7(11):2105–2115

  71. Zhou J, Zhou X, Li Y, Xing J (2015) Bacterial communities in haloalkaliphilic sulfate-reducing bioreactors under different electron donors revealed by 16S rRNA MiSeq sequencing. J. Hazard. Mater. 295:176–184

    Article  CAS  PubMed  Google Scholar 

  72. Walker LR, Del Moral R (2003) Primary succession and ecosystem rehabilitation. Cambridge University Press, London

    Book  Google Scholar 

  73. Firestone MK, Tiedje JM (1979) Temporal change in nitrous oxide and dinitrogen from denitrification following onset of anaerobiosis. Appl. Environ. Microbiol. 38(4):673–679

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Betlach MR, Tiedje JM (1981) Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl. Environ. Microbiol. 42(6):1074–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu C, Zhao C, Wang A, Guo Y, Lee DJ (2015) Denitrifying sulfide removal process on high-salinity wastewaters. Applied Microbiol Biot 99(15):6463–6469

  76. You S-J, Lin MY (2008) Estimation of the diversity of denitrifying bacteria in a membrane bioreactor by PCR amplification with nir gene probes. Environ. Eng. Sci. 25(9):1301–1310

    Article  CAS  Google Scholar 

  77. Falk S, Liu B, Braker G (2010) Isolation, genetic and functional characterization of novel soil nirK-type denitrifiers. Syst. Appl. Microbiol. 33(6):337–347

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Jiajia Ni from Guangdong Institute of Microbiology, Guangdong Academy of Science for his help in data analysis of Illumina MiSeq sequencing. This work was supported by the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2012ZX07103003-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dunhai Li.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s00248-016-0850-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Peng, C., Wang, C. et al. Microbial Succession and Nitrogen Cycling in Cultured Biofilms as Affected by the Inorganic Nitrogen Availability. Microb Ecol 73, 1–15 (2017). https://doi.org/10.1007/s00248-016-0827-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0827-4

Keywords

Navigation