Advertisement

Microbial Ecology

, Volume 72, Issue 3, pp 608–620 | Cite as

Spatial Distribution of Eukaryotic Communities Using High-Throughput Sequencing Along a Pollution Gradient in the Arsenic-Rich Creek Sediments of Carnoulès Mine, France

  • A. VolantEmail author
  • M. Héry
  • A. Desoeuvre
  • C. Casiot
  • G. Morin
  • P. N. Bertin
  • O. Bruneel
Environmental Microbiology

Abstract

Microscopic eukaryotes play a key role in ecosystem functioning, but their diversity remains largely unexplored in most environments. To advance our knowledge of eukaryotic microorganisms and the factors that structure their communities, high-throughput sequencing was used to characterize their diversity and spatial distribution along the pollution gradient of the acid mine drainage at Carnoulès (France). A total of 16,510 reads were retrieved leading to the identification of 323 OTUs after normalization. Phylogenetic analysis revealed a quite diverse eukaryotic community characterized by a total of eight high-level lineages including 37 classes. The majority of sequences were clustered in four main groups: Fungi, Stramenopiles, Alveolata and Viridiplantae. The Reigous sediments formed a succession of distinct ecosystems hosting contrasted eukaryotic communities whose structure appeared to be at least partially correlated with sediment mineralogy. The concentration of arsenic in the sediment was shown to be a significant factor driving the eukaryotic community structure along this continuum.

Keywords

Eukaryotic diversity Community spatial dynamics Acid mine drainage Arsenic 

Notes

Acknowledgments

The study was financed by the “Observatoire de Recherche Méditerranéen en Environnement” (OSU-OREME). Aurélie Volant was supported by a grant from the French Ministry of Education and Research.

Supplementary material

248_2016_826_MOESM1_ESM.docx (14 kb)
ESM 1: Table S1 Physical-ochemical characteristics of the water body (mg L−1) measured directly above the sediment at the sampling sites of Reigous Creek. (DOCX 14 kb)
248_2016_826_MOESM2_ESM.tif (382 kb)
ESM 2: Figure S1 X-ray powder diffraction patterns of selected sediment samples collected along Reigous Creek (To: tooeleite; Schw: schwertmannite; Qz: quartz; Mi: micas). (TIF 382 kb)
248_2016_826_MOESM3_ESM.pdf (727 kb)
ESM 3: Figure S2 XANES spectra of selected sediment samples. Arsenic oxidation states were determined using the linear combination fit of As(III) and As(V) ferric hydroxides spectra. Precision is ±2 %. (PDF 726 kb)
248_2016_826_MOESM4_ESM.pdf (826 kb)
ESM 4: Figure S3 Extended X-ray absorption fine structure (EXAFS) data at the As K-edge of selected sediment samples. Experimental spectra were interpreted using linear composition fitting (LCF) using 3 model compound spectra: biogenic amorphous ferric arsenate hydroxysulfate from Thiomonas sp. strain B2 (Tm As(V)-am); arsenic(V) sorbed onto synthetic schwertmannite (As(V)/schw); and arsenic(III) sorbed onto biogenic schwertmannite from Acidithiobacillus ferrooxidans strain CC1(Af As(III)/schw). See [2, 30, 61] for details on these biogenic and abiotic mineral model compounds. As(III) proportions are underestimated with respect to XANES fit results because of the lower sensitivity of EXAFS to redox composition. (PDF 826 kb)

References

  1. 1.
    Motsi T, Rowson NA, Simmons MJH (2009) Adsorption of heavy metals from acid mine drainage by natural zeolite. Int J Miner Process 92(1-2):42–48CrossRefGoogle Scholar
  2. 2.
    Morin G, Juillot F, Casiot C et al (2003) Bacterial formation of tooeleite and mixed arsenic(III) or arsenic(V)-iron(III) gels in the Carnoulès acid mine drainage, France. A XANES, XRD, and SEM study. Environ Sci Technol 37(9):1705–1712CrossRefPubMedGoogle Scholar
  3. 3.
    Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154(7):466–473CrossRefPubMedGoogle Scholar
  4. 4.
    Johnson DB (2012) Geomicrobiology of extremely acidic subsurface environments. FEMS Microbiol Ecol 81(1):2–12CrossRefPubMedGoogle Scholar
  5. 5.
    Volant A, Desoeuvre A, Casiot C et al (2012) Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoulès Mine, France. Extremophiles 16(4):645–657CrossRefPubMedGoogle Scholar
  6. 6.
    Aguilera A (2013) Eukaryotic organisms in extreme acidic environments, the Río Tinto case. Life 3(3):363–374CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Amaral-Zettler LA, Zettler ER, Theroux SM, Palacios C, Aguilera A, Amils R (2011) Microbial community structure across the tree of life in the extreme Río Tinto. ISME J 5(1):42–50CrossRefPubMedGoogle Scholar
  8. 8.
    Amils R, González-Toril E, Fernández-Remolar D et al (2007) Extreme environments as Mars terrestrial analogs: the Río Tinto case. Planet Space Sci 55(3):370–381CrossRefGoogle Scholar
  9. 9.
    Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75(7):2192–2199CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Aguilera A, Manrubia SC, Gómez F, Rodríguez N, Amils R (2006) Eukaryotic community distribution and its relationship to water physicochemical parameters in an extreme acidic environment, Río Tinto (Southwestern Spain). Appl Environ Microbiol 72(8):5325–5330. doi: 10.1128/aem.00513-06 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Aguilera A, Zettler E, Gómez F, Amaral-Zettler L, Rodríguez N, Amils R (2007) Distribution and seasonal variability in the benthic eukaryotic community of Río Tinto (SW, Spain), an acidic, high metal extreme environment. Syst Appl Microbiol 30(7):531–546CrossRefPubMedGoogle Scholar
  12. 12.
    Baker BJ, Lutz MA, Dawson SC, Bond PL, Banfield JF (2004) Metabolically active eukaryotic communities in extremely acidic mine drainage. Appl Environ Microbiol 70(10):6264–6271CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    McGinness S, Johnson DB (1992) Grazing of acidophilic bacteria by a flagellated protozoan. Microb Ecol 23(1):75–86CrossRefPubMedGoogle Scholar
  14. 14.
    Qin J, Lehr CR, Yuan C, Le XC, McDermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci U S A 106(13):5213–5217CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Brake SS, Arango I, Hasiotis ST, Burch KR (2014) Spatial and temporal distribution and characteristics of eukaryote-dominated microbial biofilms in an acid mine drainage environment: implications for development of iron-rich stromatolites. Environ Earth Sci 72(8):2779–2796CrossRefGoogle Scholar
  16. 16.
    Casiot C, Morin G, Juillot F et al (2003) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoulès creek, France). Water Res 37(12):2929–2936CrossRefPubMedGoogle Scholar
  17. 17.
    Egal M, Casiot C, Morin G, Elbaz P, Françoise, Cordier MA, Bruneel O (2010) An updated insight into the natural attenuation of As concentrations in Reigous Creek (southern France). Anglais 25(12):1949–1957Google Scholar
  18. 18.
    Bertin PN, Heinrich-Salmeron A, Pelletier E et al (2011) Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 5(11):1735–1747CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personné JC (2006) Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoulès, France. Appl Environ Microbiol 72(1):551–556. doi: 10.1128/aem.72.1.551-556.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bruneel O, Pascault N, Egal M et al (2008) Archaeal diversity in a Fe-As rich acid mine drainage at Carnoulès (France). Extremophiles 12(4):563–571CrossRefPubMedGoogle Scholar
  21. 21.
    Bruneel O, Volant A, Gallien S et al (2011) Characterization of the active bacterial community involved in natural attenuation processes in arsenic-rich Creek sediments. Microb Ecol 61(4):793–810CrossRefPubMedGoogle Scholar
  22. 22.
    Delavat F, Lett M-C, Lièvremont D (2013) Yeast and bacterial diversity along a transect in an acidic, As-Fe rich environment revealed by cultural approaches. Sci Total Environ 463–464:823–828CrossRefPubMedGoogle Scholar
  23. 23.
    Casiot C, Bruneel O, Personne JC, Leblanc M, Elbaz-Poulichet F (2004) Arsenic oxidation and bioaccumulation by the acidophilic protozoan, Euglena mutabilis, in acid mine drainage (Carnoulès, France). Sci Total Environ 320(2-3):259–267CrossRefPubMedGoogle Scholar
  24. 24.
    Halter D, Goulhen-Chollet F, Gallien S et al (2012) In situ proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, Euglena mutabilis. ISME J 6(7):1391–1402CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Brake SS, Dannelly HK, Connors KA (2001) Controls on the nature and distribution of an alga in coal mine-waste environments and its potential impact on water quality. Environ Geol 40(4):458–469CrossRefGoogle Scholar
  26. 26.
    López-García P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci U S A 100(2):697–702CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Monchy S, Sanciu G, Jobard M et al (2011) Exploring and quantifying fungal diversity in freshwater lake ecosystems using rDNA cloning/sequencing and SSU tag pyrosequencing. Environ Microbiol 13(6):1433–1453CrossRefPubMedGoogle Scholar
  28. 28.
    Hohmann C, Morin G, Ona-Nguema G, Guigner J-M, Brown GE Jr, Kappler A (2011) Molecular-level modes of As binding to Fe(III) (oxyhydr)oxides precipitated by the anaerobic nitrate-reducing Fe(II)-oxidizing Acidovorax sp. strain BoFeN1. Geochim Cosmochim Acta 75(17):4699–4712CrossRefGoogle Scholar
  29. 29.
    Ona-Nguema G, Morin G, Juillot F, Calas G, Brown GE Jr (2005) EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ Sci Technol 39(23):9147–9155CrossRefPubMedGoogle Scholar
  30. 30.
    Maillot F, Morin G, Juillot F et al (2013) Structure and reactivity of As(III)- and As(V)-rich schwertmannites and amorphous ferric arsenate sulfate from the Carnoulès acid mine drainage, France: comparison with biotic and abiotic model compounds and implications for As remediation. Geochim Cosmochim Acta 104:310–329CrossRefGoogle Scholar
  31. 31.
    Díez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67(7):2942–2951CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. doi: 10.1128/aem.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453CrossRefPubMedGoogle Scholar
  34. 34.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16):2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12(7):1889–1898CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Behnke A, Engel M, Christen R, Nebel M, Klein RR, Stoeck T (2011) Depicting more accurate pictures of protistan community complexity using pyrosequencing of hypervariable SSU rRNA gene regions. Environ Microbiol 13(2):340–349CrossRefPubMedGoogle Scholar
  37. 37.
    Guillou L, Bachar D, Audic S et al (2013) The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41(D1):D597–D604CrossRefPubMedGoogle Scholar
  38. 38.
    R Development Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org. edn., Vienna, Austria
  39. 39.
    Aliaga Goltsman DS, Comolli LR, Thomas BC, Banfield JF (2015) Community transcriptomics reveals unexpected high microbial diversity in acidophilic biofilm communities. ISME J 9(4):1014–1023CrossRefPubMedGoogle Scholar
  40. 40.
    Amaral-Zettler LA (2013) Eukaryotic diversity at pH extremes. Front Microbiol 3:441CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zirnstein I, Arnold T, Krawczyk-Barsch E, Jenk U, Bernhard G, Roske I (2012) Eukaryotic life in biofilms formed in a uranium mine. Microbiologyopen 1(2):83–94CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Amaral-Zettler LA, Gomez F, Zettler E, Keenan BG, Amils R, Sogin ML (2002) Microbiology: eukaryotic diversity in Spain’s river of fire. Nature 417(6885):137–137CrossRefPubMedGoogle Scholar
  43. 43.
    Amaral-Zettler LA, Messerli MA, Laatsch AD, Smith PJ, Sogin ML (2003) From genes to genomes: beyond biodiversity in Spain’s Río Tinto. Biol Bull 204(2):205–209CrossRefPubMedGoogle Scholar
  44. 44.
    Caron DA, Countway PD, Brown MV (2004) The growing contributions of molecular biology and immunology to protistan ecology: molecular signatures as ecological tools. J Eukaryot Microbiol 51(1):38–48CrossRefPubMedGoogle Scholar
  45. 45.
    Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157(1):31–43CrossRefPubMedGoogle Scholar
  46. 46.
    Casamayor EO, Massana R, Benlloch S et al (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4(6):338–348CrossRefPubMedGoogle Scholar
  47. 47.
    González-Toril E, Aguilera A, Souza-Egipsy V, Lopez Pamo E, Sanchez Espana J, Amils R (2011) Geomicrobiology of La Zarza-Perrunal acid mine effluent (Iberian Pyritic Belt, Spain). Appl Environ Microbiol 77(8):2685–2694CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Siefert J, Mutz M (2001) Processing of leaf litter in acid waters of the post-mining landscape in Lusatia, Germany. Ecol Eng 17(2-3):297–306CrossRefGoogle Scholar
  49. 49.
    Das BK, Roy A, Koschorreck M, Mandal SM, Wendt-Potthoff K, Bhattacharya J (2009) Occurrence and role of algae and fungi in acid mine drainage environment with special reference to metals and sulfate immobilization. Water Res 43(4):883–894CrossRefPubMedGoogle Scholar
  50. 50.
    Zafar S, Aqil F, Ahmad I (2007) Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98(13):2557–2561CrossRefPubMedGoogle Scholar
  51. 51.
    Ji LY, Zhang WW, Yu D, Cao YR, Xu H (2012) Effect of heavy metal-solubilizing microorganisms on zinc and cadmium extractions from heavy metal contaminated soil with Tricholoma lobynsis. World J Microbiol Biotechnol 28(1):293–301CrossRefPubMedGoogle Scholar
  52. 52.
    Purchase D, Scholes LN, Revitt DM, Shutes RB (2009) Effects of temperature on metal tolerance and the accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatment wetlands. J Appl Microbiol 106(4):1163–1174CrossRefPubMedGoogle Scholar
  53. 53.
    Rajpert L, Sklodowska A, Matlakowska R (2013) Biotransformation of copper from Kupferschiefer black shale (Fore-Sudetic Monocline, Poland) by yeast Rhodotorula mucilaginosa LM9. Chemosphere 91(9):1257–1265CrossRefPubMedGoogle Scholar
  54. 54.
    Fournier D, Lemieux R, Couillard D (1998) Essential interactions between Thiobacillus ferrooxidans and heterotrophic microorganisms during a wastewater sludge bioleaching process. Environ Pollut 101(2):303–309CrossRefPubMedGoogle Scholar
  55. 55.
    Vidal FV, Vidal VMV (1980) Arsenic metabolism in marine bacteria and yeast. Mar Biol 60(1):1–7. doi: 10.1007/bf00395600 CrossRefGoogle Scholar
  56. 56.
    Johnson DB, Rang L (1993) Effects of acidophilic protozoa on populations of metal-mobilizing bacteria during the leaching of pyritic coal. J Gen Microbiol 139(7):1417–1423. doi: 10.1099/00221287-139-7-1417 CrossRefGoogle Scholar
  57. 57.
    Schmidtke A, Bell EM, Weithoff G (2006) Potential grazing impact of the mixotrophic flagellate Ochromonas sp. (Chrysophyceae) on bacteria in an extremely acidic lake. J Plankton Res 28(11):991–1001. doi: 10.1093/plankt/fbl034 CrossRefGoogle Scholar
  58. 58.
    Héry M, Casiot C, Resongles E et al (2014) Release of arsenite, arsenate and methyl-arsenic species from streambed sediment affected by acid mine drainage: a microcosm study. Environ Chem 11(5):514–524. doi: 10.1071/EN13225 CrossRefGoogle Scholar
  59. 59.
    Desoeuvre A, Casiot C, Hery M (2015) Diversity and distribution of arsenic-related genes along a pollution gradient in a river affected by acid mine drainage. Microb Ecol 71(3):672–685CrossRefPubMedGoogle Scholar
  60. 60.
    Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66(2):250–271. doi: 10.1128/mmbr.66.2.250-271.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Egal M, Casiot C, Morin G et al (2009) Kinetic control on the formation of tooeleite, schwertmannite and jarosite by Acidithiobacillus ferrooxidans strains in an As(III)-rich acid mine water. Chem Geol 265(3-4):432–441CrossRefGoogle Scholar
  62. 62.
    Bruneel O, Personne JC, Casiot C et al (2003) Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoulès, France). J Appl Microbiol 95(3):492–499CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. Volant
    • 1
    Email author
  • M. Héry
    • 1
  • A. Desoeuvre
    • 1
  • C. Casiot
    • 1
  • G. Morin
    • 2
  • P. N. Bertin
    • 3
  • O. Bruneel
    • 1
  1. 1.Laboratoire HydroSciences Montpellier, UMR 5569Université de Montpellier, CC0057 (MSE)MontpellierFrance
  2. 2.Institut de Minéralogie et de Physique des Milieux Condensés, IMPMC, UMR 7590 (CNRS, Université Pierre et Marie Curie/Paris 6)ParisFrance
  3. 3.Laboratoire de Génétique Moléculaire, Génomique, MicrobiologieGMGM, UMR 7156 (Université de Strasbourg, CNRS), Département Microorganismes, Génomes, EnvironnementStrasbourgFrance

Personalised recommendations