Skip to main content
Log in

Rhizobacterial Community Structures Associated with Native Plants Grown in Chilean Extreme Environments

Microbial Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 18 August 2016

Abstract

Chile is topographically and climatically diverse, with a wide array of diverse undisturbed ecosystems that include native plants that are highly adapted to local conditions. However, our understanding of the diversity, activity, and role of rhizobacteria associated with natural vegetation in undisturbed Chilean extreme ecosystems is very poor. In the present study, the combination of denaturing gradient gel electrophoresis and 454-pyrosequencing approaches was used to describe the rhizobacterial community structures of native plants grown in three representative Chilean extreme environments: Atacama Desert (ATA), Andes Mountains (AND), and Antarctic (ANT). Both molecular approaches revealed the presence of Proteobacteria, Bacteroidetes, and Actinobacteria as the dominant phyla in the rhizospheres of native plants. Lower numbers of operational taxonomic units (OTUs) were observed in rhizosphere soils from ATA compared with AND and ANT. Both approaches also showed differences in rhizobacterial community structures between extreme environments and between plant species. The differences among plant species grown in the same environment were attributed to the higher relative abundance of classes Gammaproteobacteria and Alphaproteobacteria. However, further studies are needed to determine which environmental factors regulate the structures of rhizobacterial communities, and how (or if) specific bacterial groups may contribute to the growth and survival of native plants in each Chilean extreme environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aleklett K, Leff JW, Fierer N, Hart M (2015) Wild plant species growing closely connected in a subalpine meadow host distinct root-associated bacterial communities. PeerJ 3:e804. doi:10.7717/peerj.804

    Article  PubMed  PubMed Central  Google Scholar 

  2. Andrew DR, Fitak RR, Munguia-Vega A, Racolta A, Martinson VG, Dontsovag K (2012) Abiotic factors shape microbial diversity in Sonoran Desert soils. Appl Environ Microbiol 78:7527–7537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Azua-Bustos A, Caro-Lara L, Vicuña R (2015) Discovery and microbial content of the driest site of the hyperarid Atacama Desert, Chile. Environ Microbiol Rep. doi:10.1111/1758-2229.12261

    PubMed  Google Scholar 

  4. Bakker MG, Bradeen JM, Kinkel LL (2013) Effects of plant host species and plant community richness on streptomycete community structure. FEMS Microbiol Ecol 83:596–606

    Article  CAS  PubMed  Google Scholar 

  5. Basil AJ, Strap JL, Knotek-Smith HM, Crawford DL (2004) Studies on the microbial populations of the rhizosphere of big sagebrush (Artemisia tridentata). J Ind Microbiol Biotechnol 31:278–288

    Article  CAS  PubMed  Google Scholar 

  6. Berendsen RL, Pieterse CMJ, Bakker PA (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  7. Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148. doi:10.3389/fmicb.2014.00148

    PubMed  PubMed Central  Google Scholar 

  8. Bertsch PM, Bloom PR (1996) Aluminum. In: Bigham JM (ed) Methods of Soil Analysis, Part 3—Chemical Methods. Soil Science Society of America, Madison, pp 526–527

    Google Scholar 

  9. Bockheim JG (2015) The Soils of Antarctica. Springer International Publishing, Switzerland. doi:10.1007/978-3-319-05497-1, 273 pp

    Book  Google Scholar 

  10. Burns JH, Anacker BL, Strauss SY, Burke DJ (2015) Soil microbial community variation correlates most strongly with plant species identity, followed by soil chemistry, spatial location and plant genus. AoB Plants 7:plv030. doi:10.1093/aobpla/plv030

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ciccazzo S, Esposito A, Rolli E, Zerbe S, Daffonchio D, Brusetti L (2014) Different pioneer plant species select specific rhizosphere bacterial communities in a high mountain environment. SpringerPlus 3:391. doi:10.1186/2193-1801-3-391

    Article  PubMed  PubMed Central  Google Scholar 

  12. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  13. Clarke KR, Somerfield PJ, Gorley RN (2008) Testing null hypotheses in exploratory community analyses: similarity profiles and biota-environmental linkage. J Exp Mar Biol Ecol 366:56–69

    Article  Google Scholar 

  14. Cleary DFR, Smalla K, Mendonça-Hagler LCS, Gomes NCM (2012) Assessment of variation in bacterial composition among microhabitats in a mangrove environment using DGGE fingerprints and barcoded pyrosequencing. PLoS ONE 7(1):e29380. doi:10.1371/journal.pone.0029380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Combs SM, Nathan MV (1998) Soil organic matter. In: Brown JR (ed) Recommended Chemical Soil Test Procedures for the North Central Region. NCR Publication No. 221. Missouri Agricultural Experiment Station, Columbia, pp 31–33

    Google Scholar 

  16. Cowan DA, Makhalanyane TP, Dennis PG, Hopkins DW (2014) Microbial ecology and biogeochemistry of continental Antarctic soils. Front Microbiol 5:154. doi:10.3389/fmicb.2014.00154

    Article  PubMed  PubMed Central  Google Scholar 

  17. Crits-Christoph A, Robinson CK, Barnum T, Fricke WF, Davila AF, Jedynak B, McKay CP, DiRuggiero J (2013) Colonization patterns of soil microbial communities in the Atacama Desert. Microbiome 1:28. doi:10.1186/2049-2618-1-28

    Article  PubMed  PubMed Central  Google Scholar 

  18. Deslippe JR, Hartmann M, Simard SW, Mohn WW (2012) Long-term warming alters the composition of Arctic soil microbial communities. FEMS Microbiol Ecol 82:303–315

    Article  CAS  PubMed  Google Scholar 

  19. Ferjani R, Marasco R, Rolli E, Cherif H, Cherif A, Gtari M, Boudabous A, Daffonchio D, Ouzari H-I (2015) The date palm tree rhizosphere is a niche for plant growth promoting bacteria in the oasis ecosystem. BioMed Res Int 2015:153851. doi:10.1155/2015/153851

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gehlot HS, Panwar D, Tak N, Tak A, Sankhla IS, Poonar N, Parihar R, Shekhawat NS, Kumar M, Tiwari R, Ardley J, James EK, Sprent JI (2012) Nodulation of legumes from the Thar desert of India and molecular characterization of their rhizobia. Plant Soil 357:227–243

    Article  CAS  Google Scholar 

  22. Goda A, Maruyama F, Michi Y, Nakagawa I, Harada K (2014) Analysis of the factors affecting the formation of the microbiome associated with chronic osteomyelitis of the jaw. Clin Microbiol Infect 20:O309–O317

    Article  CAS  PubMed  Google Scholar 

  23. Good IJ (1953) The population frequencies of species and the estimation of population parameters. Biometrika 40:237–264

    Article  Google Scholar 

  24. He J, Xu Z, Hughes J (2005) Pre-lysis washing improves DNA extraction from a forest soil. Soil Biol Biochem 37:2337–2341

    Article  CAS  Google Scholar 

  25. Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M (2000) Monitoring impact of in situ biostimulation treatment on ground-water bacterial community by DGGE. FEMS Microbiol Ecol 32:129–141

    Article  CAS  PubMed  Google Scholar 

  26. Jorquera MA, Shaharoona B, Nadeem SM, Mora ML, Crowley DE (2012) Plant growth-promoting rhizobacteria associated with ancient clones of creosote bush (Larrea tridentata) 64: 1008–1017

  27. Jorquera MA, Inostroza NG, Lagos LM, Barra PJ, Marileo LG, Rilling JI, Campos DC, Crowley DE, Richardson AE, Mora ML (2014) Bacterial community structure and detection of putative plant growth-promoting rhizobacteria associated with plants grown in Chilean agro-ecosystems and undisturbed ecosystems. Biol Fertil Soils 50:1141–1153

    Article  Google Scholar 

  28. Kuramae EE, Yergeau E, Wong LC, Pij AS, van Veen JA, Kowalchuk GA (2012) Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol Ecol 79:12–24

    Article  CAS  PubMed  Google Scholar 

  29. Lagos LM, Navarrete OU, Maruyama F, Crowley DE, Cid FP, Mora ML, Jorquera MA (2014) Bacterial community structures in rhizosphere microsites of ryegrass (Lolium perenne var. Nui) as revealed by pyrosequencing. Biol Fertil Soils 50:1253–1266

    Article  Google Scholar 

  30. Lammel DR, Cruz LM, Carrer H, Cardoso EJBN (2013) Diversity and symbiotic effectiveness of beta-rhizobia isolated from sub-tropical legumes of a Brazilian Araucaria Forest. World J Microbiol Biotechnol 29:2335–2342

    Article  CAS  PubMed  Google Scholar 

  31. Lee TK, Van Doan T, Yoo K, Choi S, Kim C, Park J (2010) Discovery of commonly existing anode biofilm microbes in two different wastewater treatment MFCs using FLX Titanium pyrosequencing. Appl Microbiol Biotechnol 87:2335–2343

    Article  CAS  PubMed  Google Scholar 

  32. Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JM, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schütz M, Steenbock C, Stevens CJ, Fierer N (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci U S A 112:10967–10972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Maier RM, Drees KP, Neilson JW, Henderson DA, Quade J, Betancourt JL, Navarro-González R, Rainey FA, McKay CP (2010) Microbial life in the Atacama Desert. Science 306:1289–1290

    Article  Google Scholar 

  34. Marasco R, Rolli E, Ettoumi B, Vigani G, Mapelli F, Borin S, Abou-Hadid AF, El-Behairy UA, Sorlini C, Cherif A, Zocchi G, Daffonchio D (2012) A drought resistance-promoting microbiome is selected by root system under desert farming. PLoS ONE 7:e48479. doi:10.1371/journal.pone.0048479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marzorati M, Wittebolle L, Boon N, Daffonchio D, Verstraete W (2008) How to get more out of molecular fingerprints: practical tools for microbial ecology. Environ Microbiol 10:1571–1581

    Article  CAS  PubMed  Google Scholar 

  36. Massaccesi L, Benucci GMN, Gigliotti G, Cocco S, Corti G, Agnelli A (2015) Rhizosphere effect of three plant species of environment under periglacial conditions (Majella Massif, central Italy). Soil Biol Biochem 89:184–195

    Article  CAS  Google Scholar 

  37. McCarthy CB, Colman DI (2015) Soil metagenomes from different pristine environments of northwest Argentina. Genome Announc 3:e00926–15

    PubMed  PubMed Central  Google Scholar 

  38. Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  39. Navarro-González R, Rainey FA, Molina P, Bagaley DR, Hollen BJ, de la Rosa J, Small AM, Quinn RC, Grunthaner FJ, Cáceres L, Gomez-Silva B, McKay CP (2003) Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 302:1018–1021

    Article  PubMed  Google Scholar 

  40. Neilson JW, Quade J, Ortiz M, Nelson WM, Legatzki A, Tian F, LaComb M, Betancourt JL, Wing RA, Soderlund CA, Maier RM (2012) Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert, Chile. Extremophiles 16:553–566

    Article  PubMed  Google Scholar 

  41. Okie JG, Van Horn DJ, Storch D, Barrett JE, Gooseff MN, Kopsova L, Takacs-Vesbach CD (2015) Niche and metabolic principles explain patterns of diversity and distribution: theory and a case study with soil bacterial communities. Proc R Soc B 282:20142630. doi:10.1098/rspb.2014.2630

    Article  PubMed  PubMed Central  Google Scholar 

  42. Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A 110:6548–6553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Radojević M, Bashkin VN (1999) Practical Environmental Analysis. The Royal Society of Chemistry, Cambridge, 464 pp

    Google Scholar 

  45. Reis FB, Simon MF, Gross E, Boddey RM, Elliott GN, Neto NE, Loureiro MF, Queiroz LP, Scotti MR, Chen WM, Norén A, Rubio MC, de Faria SM, Bontemps C, Goi SR, Young JPW, Sprent JI, James EK (2010) Nodulation and nitrogen fixation by Mimosa spp. in the Cerrado and Caatinga biomes of Brazil. New Phytol 186:934–946

    Article  PubMed  Google Scholar 

  46. Ryan RP, Monchy S, Cardinale M, Taghavi S, Crossman L, Avison MB, Berg G, van der Lelie D, Dow JM (2009) The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat Rev Microbiol 7:514–525

    Article  CAS  PubMed  Google Scholar 

  47. Roesch LFW, Fulthorpe RR, Pereira AB, Pereira CK, Lemos LN, Barbosa AD, Suleiman AKA, Gerber AL, Pereira MG, Loss A, da Costa EM (2012) Soil bacterial community abundance and diversity in ice-free areas of Keller Peninsula, Antarctica. Appl Soil Ecol 61:7–15

    Article  Google Scholar 

  48. Saleem M, Law AD, Moe LA (2015) Nicotiana roots recruit rare rhizosphere taxa as major root-inhabiting microbes. Microb Ecol 71:469–472

    Article  PubMed  Google Scholar 

  49. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schreiter S, Ding G-C, Heuer H, Neumann G, Sandmann M, Grosch R, Kropf S, Smalla K (2014) Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce. Front Microbiol 5:144. doi:10.3389/fmicb.2014.00144

    Article  PubMed  PubMed Central  Google Scholar 

  51. Schweitzer JA, Bailey JK, Fischer DG, LeRoy CJ, Lonsdorf EV, Whitham TG, Hart SC (2008) Plant–soil–microorganism interactions: heritable relationship between plant genotype and associated soil microorganisms. Ecology 89:773–781

    Article  PubMed  Google Scholar 

  52. Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Methods 69:470–479

    Article  CAS  PubMed  Google Scholar 

  53. Stomeo F, Makhalanyane TP, Valverde A, Pointing SB, Stevens MI, Cary CS, Tuffin MI, Cowan DA (2012) Abiotic factors influence microbial diversity in permanently cold soil horizons of a maritime-associated Antarctic Dry Valley. FEMS Microbiol Ecol 82:326–340

    Article  CAS  PubMed  Google Scholar 

  54. Stopnisek N, Bodenhausen N, Frey B, Fierer N, Eberl L, Weisskopf L (2014) Genus-wide acid tolerance accounts for the biogeographical distribution of soil Burkholderia populations. Environ Microbiol 16:1503–1512

    Article  CAS  PubMed  Google Scholar 

  55. Suarez-Moreno ZR, Caballero-Mellado J, Coutinho BG, Mendonça-Previato L, James EK, Venturi V (2012) Common features of environmental and potentially beneficial plant-associated Burkholderia. Microb Ecol 63:249–266

    Article  PubMed  Google Scholar 

  56. Teixeira LCRS, Peixoto RS, Cury JC, Sul WJ, Pellizari VH, Tiedje J, Rosado AS (2010) Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, maritime Antarctica. ISME J 4:989–1001

    Article  PubMed  Google Scholar 

  57. Tytgat B, Verleyen E, Obbels D, Peeters K, De Wever A, D’hondt S, De Meyer T, Van Criekinge W, Vyverman W, Willems A (2014) Bacterial diversity assessment in Antarctic terrestrial and aquatic microbial mats: a comparison between bidirectional pyrosequencing and cultivation. PLoS One 9:e97564. doi:10.1371/journal.pone.0097564

    Article  PubMed  PubMed Central  Google Scholar 

  58. Vial L, Chapalain A, Groleau M-C, Déziel E (2011) The various lifestyles of the Burkholderia cepacia complex species: a tribute to adaptation. Environ Microbiol 13:1–12

    Article  CAS  PubMed  Google Scholar 

  59. Wagner AO, Praeg N, Reitschuler C, Illmer P (2015) Effect of DNA extraction procedure, repeated extraction and ethidium monoazide (EMA)/propidium monoazide (PMA) treatment on overall DNA yield and impact on microbial fingerprints for bacteria, fungi and archaea in a reference soil. Appl Soil Ecol 93:56–64

    Article  PubMed  PubMed Central  Google Scholar 

  60. Warncke D, Brown JR (1998) Potassium and other basic cations. In: Brown JR (ed) Recommended Chemical Soil Test Procedures for the North Central Region. NCR Publication No. 221. Missouri Agricultural Experiment Station, Columbia, pp 31–33

    Google Scholar 

  61. Yang J, Kloepper JW, Ryu CM (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the two anonymous referees for their helpful and constructive criticism. This study was financed by International Cooperation Projects Conicyt-USA (code USA2013-0010), Conicyt-MEC (no. 80140015), and Fondecyt no. 1120505. J.J. Acuña thanks the Fondecyt Postdoctoral Project (no. 3140620).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milko A. Jorquera.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00248-016-0830-9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jorquera, M.A., Maruyama, F., Ogram, A.V. et al. Rhizobacterial Community Structures Associated with Native Plants Grown in Chilean Extreme Environments. Microb Ecol 72, 633–646 (2016). https://doi.org/10.1007/s00248-016-0813-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0813-x

Keywords

Navigation