Reeburgh W (2007) Oceanic methane biogeochemistry. Chem. Rev. 107:486–513. doi:10.1021/cr050362v
CAS
Article
PubMed
Google Scholar
Hinrichs K-U, Boetius A (2002) The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry. In: Ocean margin system. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp. 457–477
Chapter
Google Scholar
van Teeseling MCF, Pol a., Harhangi HR, et al. (2014) Expanding the verrucomicrobial methanotrophic world: description of three novel species of Methylacidimicrobium gen. nov.. Appl. Environ. Microbiol. 80:6782–6791. doi: 10.1128/AEM.01838-14
Op den Camp HJM, Islam T, Stott MB, et al. (2009) Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ. Microbiol. Rep. 1:293–306. doi:10.1111/j.1758-2229.2009.00022.x
CAS
Article
PubMed
Google Scholar
Håvelsrud O, Haverkamp TH, Kristensen T, et al. (2011) A metagenomic study of methanotrophic microorganisms in coal oil point seep sediments. BMC Microbiol. 11:221. doi:10.1186/1471-2180-11-221
Article
PubMed
PubMed Central
Google Scholar
Boden R, Cunliffe M, Scanlan J, et al. (2011) Complete genome sequence of the aerobic marine methanotroph Methylomonas methanica MC09. J. Bacteriol. 193:7001–7002. doi:10.1128/JB.06267-11
CAS
Article
PubMed
PubMed Central
Google Scholar
Lidstrom M (1988) Isolation and characterization of marine methanotrophs. Antonie Van Leeuwenhoek 54:189–199. doi:10.1007/BF00443577
CAS
Article
PubMed
Google Scholar
Sorokin DY, Jones BE, Kuenen JG (2000) An obligate methylotrophic, methane-oxidizing Methylomicrobium species from a highly alkaline environment. Extremophiles 4:145–155. doi:10.1007/s007920070029
CAS
Article
PubMed
Google Scholar
Hirayama H, Fuse H, Abe M, et al. (2013) Methylomarinum vadi gen. nov., sp. nov., a methanotroph isolated from two distinct marine environments. Int. J. Syst. Evol. Microbiol. 63:1073–1082. doi:10.1099/ijs.0.040568-0
CAS
Article
PubMed
Google Scholar
Sieburth JN, Johnson PW, Eberhardt MA, et al. (1987) The first methane-oxidizing bacterium from the upper mixing layer of the deep ocean: Methylomonas pelagica sp. nov. Curr. Microbiol. 14:285–293. doi:10.1007/BF01568138
CAS
Article
Google Scholar
Hirayama H, Abe M, Miyazaki M, et al. (2014) Methylomarinovum caldicuralii gen. nov., sp. nov., a moderately thermophilic methanotroph isolated from a shallow submarine hydrothermal system, and proposal of the family Methylothermaceae fam. nov. Int. J. Syst. Evol. Microbiol. 64:989–999. doi:10.1099/ijs.0.058172-0
CAS
Article
PubMed
Google Scholar
Tavormina PL, Hatzenpichler R, McGlynn S, et al. (2015) Methyloprofundus sedimenti gen. nov., sp. nov., an obligate methanotroph from ocean sediment belonging to the “deep sea-1” clade of marine methanotrophs. Int. J. Syst. Evol. Microbiol. 65:251–259. doi:10.1099/ijs.0.062927-0
CAS
Article
PubMed
Google Scholar
Takeuchi M, Kamagata Y, Oshima K, et al. (2014) Methylocaldum marinum sp. nov., a thermotolerant, methane-oxidizing bacterium isolated from marine sediments, and emended description of the genus Methylocaldum. Int. J. Syst. Evol. Microbiol. 64:3240–3246. doi:10.1099/ijs.0.063503-0
CAS
Article
PubMed
Google Scholar
Fuse H, Ohta M, Takimura O, et al. (1998) Oxidation of trichloroethylene and dimethyl sulfide by a marine Methylomicrobium strain containing soluble methane monooxygenase. Biosci. Biotechnol. Biochem. 62:1925–1931. doi:10.1271/bbb.62.1925
CAS
Article
PubMed
Google Scholar
Flynn JD, Hirayama H, Sakai Y, et al. (2016) Draft genome sequences of gammaproteobacterial methanotrophs isolated from marine ecosystems: table 1. Genome Announc 4:e01629–e01615. doi:10.1128/genomeA.01629-15
Article
PubMed
PubMed Central
Google Scholar
Lees V, Owens NP, Murrell JC (1991) Nitrogen metabolism in marine methanotrophs. Arch. Microbiol. 157:60–65. doi:10.1007/BF00245336
CAS
Article
Google Scholar
Holmes AJ, Owens NJP, Colin MJ (1995) Detection of novel marine methanotrophs using phylogenetic and functional gene probes after methane enrichment. Microbiology 141:1947–1955. doi:10.1099/13500872-141-8-1947
CAS
Article
PubMed
Google Scholar
Holmes AJ, Costello A, Lidstrom ME, Murrell JC (1995) Evidence that participate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. FEMS Microbiol. Lett. 132:203–208. doi:10.1111/j.1574-6968.1995.tb07834.x
CAS
Article
PubMed
Google Scholar
Costello AM, Lidstrom ME (1999) Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl. Environ. Microbiol. 65:5066–5074
CAS
PubMed
PubMed Central
Google Scholar
Tavormina PL, Ussier W, Orphan VJ (2008) Planktonic and sediment-associated aerobic methanotrophs in two seep systems along the North American margin. Appl. Environ. Microbiol. 74:3985–3995. doi:10.1128/AEM.00069-08
CAS
Article
PubMed
PubMed Central
Google Scholar
Pitcher DG, Saunders NA, Owen RJ (1989) Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol. 8:151–156. doi:10.1111/j.1472-765X.1989.tb00262.x
CAS
Article
Google Scholar
Russ L, Speth DR, Jetten MSM, et al. (2014) Interactions between anaerobic ammonium and sulfur-oxidizing bacteria in a laboratory scale model system. Environ. Microbiol. 16:3487–3498. doi:10.1111/1462-2920.12487
CAS
Article
PubMed
Google Scholar
Takeuchi M, Katayama T, Yamagishi T, et al. (2014) Methyloceanibacter caenitepidi gen. nov., sp. nov., a facultatively methylotrophic bacterium isolated from marine sediments near a hydrothermal vent. Int. J. Syst. Evol. Microbiol. 64:462–468. doi:10.1099/ijs.0.053397-0
CAS
Article
PubMed
Google Scholar
Doronina NV, Trotsenko YA, McDonald IR, et al. (2001) Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov., chloromethane-utilizing bacteria isolated from a polluted environment. Int. J. Syst. Evol. Microbiol. 51:119–122. doi:10.1099/00207713-51-1-119
Article
PubMed
Google Scholar
Gartner A, Wiese J, Imhoff JF (2008) Amphritea atlantica gen. nov., sp. nov., a gammaproteobacterium from the Logatchev hydrothermal vent field. Int. J. Syst. Evol. Microbiol. 58:34–39. doi:10.1099/ijs.0.65234-0
Article
PubMed
Google Scholar
Gauthier MJ, Lafay B, Christen R, et al. (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int. J. Syst. Bacteriol. 42:568–576. doi:10.1099/00207713-42-4-568
CAS
Article
PubMed
Google Scholar
Tavormina PL, Orphan VJ, Kalyuzhnaya MG, et al. (2011) A novel family of functional operons encoding methane/ammonia monooxygenase-related proteins in gammaproteobacterial methanotrophs. Environ. Microbiol. Rep. 3:91–100. doi:10.1111/j.1758-2229.2010.00192.x
CAS
Article
PubMed
Google Scholar
Hamilton R, Kits KD, Ramonovskaya VA, et al. (2015) Draft genomes of gammaproteobacterial methanotrophs isolated from terrestrial ecosystems: table 1. Genome Announc 3:e00515–e00515. doi:10.1128/genomeA.00515-15
Article
PubMed
PubMed Central
Google Scholar
Hanson RS, Hanson TE (1996) Methanotrophic bacteria. Microbiol. Rev. 60:439–471
CAS
PubMed
PubMed Central
Google Scholar
Keltjens JT, Pol A, Reimann J, Op Den Camp HJM (2014) PQQ-dependent methanol dehydrogenases: rare-earth elements make a difference. Appl. Microbiol. Biotechnol. 98:6163–6183. doi:10.1007/s00253-014-5766-8
CAS
Article
PubMed
Google Scholar
Pol A, Barends TRM, Dietl A, et al. (2014) Rare earth metals are essential for methanotrophic life in volcanic mudpots. Environ. Microbiol. 16:255–264. doi:10.1111/1462-2920.12249
CAS
Article
PubMed
Google Scholar
Taubert M, Grob C, Howat AM, et al. (2015) XoxF encoding an alternative methanol dehydrogenase is widespread in coastal marine environments. Environ. Microbiol. 17:3937–3948. doi:10.1111/1462-2920.12896
CAS
Article
PubMed
Google Scholar
Giovannoni SJ, Hayakawa DH, Tripp HJ, et al. (2008) The small genome of an abundant coastal ocean methylotroph. Environ. Microbiol. 10:1771–1782. doi:10.1111/j.1462-2920.2008.01598.x
CAS
Article
PubMed
Google Scholar
Beck DAC, McTaggart TL, Setboonsarng U, et al. (2014) The expanded diversity of Methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes. PLoS One 9:e102458. doi:10.1371/journal.pone.0102458
Article
PubMed
PubMed Central
Google Scholar
Pieja AJ, Rostkowski KH, Criddle CS (2011) Distribution and selection of poly-3-hydroxybutyrate production capacity in methanotrophic Proteobacteria. Microb. Ecol. 62:564–573. doi:10.1007/s00248-011-9873-0
CAS
Article
PubMed
Google Scholar
Khmelenina VN, Sakharovskiĭ VG, Reshetnikov a S, Trotsenko I a (2000) Synthesis of osmoprotectors by halophilic and alkalophilic methanotrophs. Mikrobiologiia 69:465–470.
Nyerges G, Stein LY (2009) Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol. Lett. 297:131–136. doi:10.1111/j.1574-6968.2009.01674.x
CAS
Article
PubMed
Google Scholar
Nyerges G, Han SK, Stein LY (2010) Effects of ammonium and nitrite on growth and competitive fitness of cultivated methanotrophic bacteria. Appl. Environ. Microbiol. 76:5648–5651. doi:10.1128/AEM.00747-10
CAS
Article
PubMed
PubMed Central
Google Scholar
Campbell MA, Nyerges G, Kozlowski JA, et al. (2011) Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. FEMS Microbiol. Lett. 322:82–89. doi:10.1111/j.1574-6968.2011.02340.x
CAS
Article
PubMed
Google Scholar
Kits KD, Klotz MG, Stein LY (2015) Methane oxidation coupled to nitrate reduction under hypoxia by the gammaproteobacterium Methylomonas denitrificans, sp. nov. type strain FJG1. Environ. Microbiol. 17:3219–3232. doi:10.1111/1462-2920.12772
CAS
Article
PubMed
Google Scholar
Hoefman S, van der Ha D, Boon N, et al. (2014) Niche differentiation in nitrogen metabolism among methanotrophs within an operational taxonomic unit. BMC Microbiol. 14:83. doi:10.1186/1471-2180-14-83
Article
PubMed
PubMed Central
Google Scholar
Graf DRH, Jones CM, Hallin S (2014) Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N2O emissions. PLoS One 9:e114118. doi:10.1371/journal.pone.0114118
Article
PubMed
PubMed Central
Google Scholar
Murrell JC, Dalton H (1983) Nitrogen fixation in obligate methanotrophs. Microbiology 129:3481–3486. doi:10.1099/00221287-129-11-3481
CAS
Article
Google Scholar
Auman AJ, Speake CC, Lidstrom ME, Auman ANNJ (2001) nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl. Environ. Microbiol. 67:4009–4016. doi:10.1128/AEM.67.9.4009
CAS
Article
PubMed
PubMed Central
Google Scholar
Boulygina ES, Kuznetsov BB, Marusina a. I, et al. (2002) A study of nucleotide sequences of nifH genes of some methanotrophic bacteria. Microbiology 71:425–432. doi: 10.1023/A:1019893526803
Khadem AF, Pol A, Jetten MSM, Op den Camp HJM (2010) Nitrogen fixation by the verrucomicrobial methanotroph “Methylacidiphilum fumariolicum” SolV. Microbiology 156:1052–1059. doi:10.1099/mic.0.036061-0
CAS
Article
PubMed
Google Scholar
Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406–425
CAS
PubMed
Google Scholar
Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution (N Y) 39:783. doi:10.2307/2408678
Article
Google Scholar
Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York
Google Scholar
Tamura K, Stecher G, Peterson D, et al. (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30:2725–2729. doi:10.1093/molbev/mst197
CAS
Article
PubMed
PubMed Central
Google Scholar
Parks DH, Imelfort M, Skennerton CT, et al. (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25:1043–1055. doi:10.1101/gr.186072.114
CAS
Article
PubMed
PubMed Central
Google Scholar