Advertisement

Microbial Ecology

, Volume 72, Issue 2, pp 381–393 | Cite as

Comparative Study of Bacterial Communities in Nepenthes Pitchers and Their Correlation to Species and Fluid Acidity

  • Pattanop KanokratanaEmail author
  • Wuttichai Mhuanthong
  • Thanaporn Laothanachareon
  • Sithichoke Tangphatsornruang
  • Lily Eurwilaichitr
  • Trongtham Kruetreepradit
  • Shawn Mayes
  • Verawat Champreda
Environmental Microbiology

Abstract

Pitchers are specialized digestive organs of carnivorous plants which evolved for trapping prey and represent a unique environment harboring hidden diversity of unexplored microbes forming transient hydrolytic microcosms. In this study, the diversity of bacterial communities in the pitcher fluids of seven local Nepenthes found in Thailand was assessed by tagged 16S ribosomal RNA (rRNA) gene amplicon sequencing on an Ion PGM™ platform. A total of 1,101,000 filtered sequences were obtained which were taxonomically classified into 20 phyla, 48 classes, 72 orders, 153 families, and 442 genera while the remainder (1.43 %) could not be assigned to any existing taxa. Proteobacteria represented the predominant members in closed pitchers and more diversified bacterial taxa particularly Bacteriodetes and Actinobacteria, showed increasing abundance in open pitchers containing insect bodies. Principal coordinate analysis revealed that distribution of bacterial taxa was not significantly related to the Nepenthes species but strongly correlated to the pH of the pitcher fluids (pH 1.7–6.7). Acidicella was a highly dominant bacterial genus in acidic pitcher fluids while Dyella and Mycobacterium were also common genera in most pitchers. A unique microbial community structure was found in Nepenthes ampullaria which could reflect their adaptation to digest leaf litter, in addition to insect prey. The work revealed the highly unexplored nature of bacterial microcosms in Nepenthes pitcher fluids and provides insights into their community structure in this unique ecological system.

Keywords

Bacterial diversity Nepenthes Next-generation sequencing Pitcher fluid 16S rRNA gene 

Notes

Acknowledgments

This project was financially supported by the National Center for Genetic Engineering and Biotechnology (grant number P-15-50129). The authors thank SEANSRF for sample collection, advice, and their commitment to Nepenthes conservation in Thailand.

Supplementary material

248_2016_798_MOESM1_ESM.docx (293 kb)
Fig. S1 (DOCX 293 kb)
248_2016_798_MOESM2_ESM.docx (32 kb)
Table S1 (DOCX 31 kb)

References

  1. 1.
    Adamec L (1997) Mineral nutrition of carnivorous plants: a review. Bot Rev 63:273–299CrossRefGoogle Scholar
  2. 2.
    Giusto BD, Bessiere JM, Gueroult M, Lim LBL, Marshall DJ, Hossaert-McKey M, Gaume L (2010) Flower-scent mimicry masks a deadly trap in the carnivorous plant Nepenthes rafflesiana. J Ecol 98:845–856CrossRefGoogle Scholar
  3. 3.
    Giusto BD, Grosbois V, Fargeas E, Marshall DJ, Gaume L (2008) Contribution of pitcher fragrance and fluid viscosity to high prey diversity in a Nepenthes carnivorous plant from Borneo. J Biosci 33:121–136CrossRefPubMedGoogle Scholar
  4. 4.
    Clarke C (2006) Nepenthes of Borneo. Natural History Publications, Kota KinabaluGoogle Scholar
  5. 5.
    Adlassnig W, Peroutka M, Lendl T (2011) Traps of carnivorous pitcher plants as a habitat: composition of the fluid, biodiversity and mutualistic activities. Ann Bot 107:181–194CrossRefPubMedGoogle Scholar
  6. 6.
    Kadek A, Mrazek H, Halada P, Rey M, Schriemer DC, Man P (2014) Aspartic protease nepenthesin-1 as a tool for digestion in hydrogen/deuterium exchange mass spectrometry. Anal Chem 86:4287–4294CrossRefPubMedGoogle Scholar
  7. 7.
    Buch F, Kaman WE, Bikker FJ, Yilamujiang A, Mithofer A (2015) Nepenthesin protease activity indicates digestive fluid dynamics in carnivorous Nepenthes plants. PLoS One 10:e0118853CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Takeuchi Y, Salcher MM, Ushio M, Shimizu-Inatsugi R, Kobayashi MJ, Diway B, von Mering C, Pernthaler J, Shimizu KK (2011) In situ enzyme activity in the dissolved and particulate fraction of the fluid from four pitcher plant species of the genus Nepenthes. PLoS One 6:e25144CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Heslop-Harrison Y (1975) Enzyme release in carnivorous plants. Front Biol 43:525–578PubMedGoogle Scholar
  10. 10.
    Eilenberg H, Pnini-Cohen S, Schuster S, Movtchan A, Zilberstein A (2006) Isolation and characterization of chitinase genes from pitchers of the carnivorous plant Nepenthes khasiana. J Exp Bot 57:2775–2784CrossRefPubMedGoogle Scholar
  11. 11.
    Rottloff S, Stieber R, Maischak H, Turini FG, Heubl G, Mithofer A (2011) Functional characterization of a class III acid endochitinase from the traps of the carnivorous pitcher plant genus, Nepenthes. J Exp Bot 62:4639–4647CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Mithofer A (2011) Carnivorous pitcher plants: insights in an old topic. Phytochemistry 72:1678–1682CrossRefPubMedGoogle Scholar
  13. 13.
    Renner T, Specht CD (2013) Inside the trap: gland morphologies, digestive enzymes, and the evolution of plant carnivory in the Caryophyllales. Curr Opin Plant Biol 16:436–442CrossRefPubMedGoogle Scholar
  14. 14.
    Chou LY, Clarke CM, Dykes GA (2014) Bacterial communities associated with the pitcher fluids of three Nepenthes (Nepenthaceae) pitcher plant species growing in the wild. Arch Microbiol 196:709–717CrossRefPubMedGoogle Scholar
  15. 15.
    Sota T, Mogi M, Kato K (1998) Local and regional-scale food web structure in Nepenthes alata pitchers. Biotropica 30:82–91CrossRefGoogle Scholar
  16. 16.
    Mouquet N, Daufresne T, Gray SM, Miller TE (2008) Modelling the relationship between a pitcher plant (Sarracenia purpurea) and its phytotelma community: mutualism or parasitism? Funct Ecol 22:728–737CrossRefGoogle Scholar
  17. 17.
    Koopman MM, Carstens BC (2011) The microbial Phyllogeography of the carnivorous plant Sarracenia alata. Microb Ecol 61:750–758CrossRefPubMedGoogle Scholar
  18. 18.
    Koopman MM, Fuselier DM, Hird S, Carstens BC (2010) The carnivorous pale pitcher plant harbors diverse, distinct, and time-dependent bacterial communities. Appl Environ Microbiol 76:1851–1860CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Krieger JR, Kourtev PS (2012) Bacterial diversity in three distinct sub-habitats within the pitchers of the northern pitcher plant, Sarracenia purpurea. FEMS Microbiol Ecol 79:555–567CrossRefPubMedGoogle Scholar
  20. 20.
    Krieger JR, Kourtev PS (2012) Detection of methanogenic archaea in the pitchers of the Northern pitcher plant (Sarracenia purpurea). Can J Microbiol 58:189–194CrossRefPubMedGoogle Scholar
  21. 21.
    Hepburn JS (1918) Biochemical studies of the pitcher liquor of Nepenthes. Proc Am Philos Soc 57:112–129Google Scholar
  22. 22.
    Siragusa AJ, Swenson JE, Casamatta DA (2007) Culturable bacteria present in the fluid of the hooded-pitcher plant Sarracenia minor based on 16S rDNA gene sequence data. Microb Ecol 54:324–331CrossRefPubMedGoogle Scholar
  23. 23.
    Glenn A, Bodri MS (2012) Fungal endophyte diversity in Sarracenia. PLoS One 7:e32980CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Srivastava A, Rogers WL, Breton CM, Cai L, Malmberg RL (2011) Transcriptome analysis of Sarracenia, an insectivorous plant. DNA Res 18:253–261CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Takeuchi Y, Chaffron S, Salcher MM, Shimizu-Inatsugi R, Kobayashi MJ, Diway B, von Mering C, Pernthaler J, Shimizu KK (2015) Bacterial diversity and composition in the fluid of pitcher plants of the genus Nepenthes. Syst Appl Microbiol 38:330–339CrossRefPubMedGoogle Scholar
  26. 26.
    Morohoshi T, Oikawa M, Sato S, Kikuchi N, Kato N, Ikeda T (2011) Isolation and characterization of novel lipases from a metagenomic library of the microbial community in the pitcher fluid of the carnivorous plant Nepenthes hybrida. J Biosci Bioeng 112:315–320CrossRefPubMedGoogle Scholar
  27. 27.
    Zhu H, Qu F, Zhu LH (1993) Isolation of genomic DNAs from plants, fungi and bacteria using benzyl chloride. Nucleic Acids Res 21:5279–5280CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nat Protoc 3:267–278CrossRefPubMedGoogle Scholar
  29. 29.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642CrossRefPubMedGoogle Scholar
  32. 32.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172CrossRefPubMedGoogle Scholar
  35. 35.
    Lloyd FE (1942) The carnivorous plants. Ronald Press, New YorkGoogle Scholar
  36. 36.
    Morrissey SM (1960) The secretion of acid by Nepenthes. J Physiol 150:16–17Google Scholar
  37. 37.
    An CI, Fukusaki E, Kobayashi A (2001) Plasma-membrane H+−ATPases are expressed in pitchers of the carnivorous plant Nepenthes alata Blanco. Planta 212:547–555CrossRefPubMedGoogle Scholar
  38. 38.
    Plummer GL, Jackson TH (1963) Bacterial activities within the sarcophagus of the insectivorous plant, Sarracenia Flava. Am Midl Nat 69:462–469CrossRefGoogle Scholar
  39. 39.
    Hatano N, Hamada T (2012) Proteomic analysis of secreted protein induced by a component of prey in pitcher fluid of the carnivorous plant Nepenthes alata. J Proteome 75:4844–4852CrossRefGoogle Scholar
  40. 40.
    Panizza P, Syfantou N, Pastor FI, Rodriguez S, Diaz P (2013) Acidic lipase Lip I.3 from a Pseudomonas fluorescens-like strain displays unusual properties and shows activity on secondary alcohols. J Appl Microbiol 114:722–732CrossRefPubMedGoogle Scholar
  41. 41.
    Ramani K, Chockalingam E, Sekaran G (2010) Production of a novel extracellular acidic lipase from Pseudomonas gessardii using slaughterhouse waste as a substrate. J Ind Microbiol Biotechnol 37:531–535CrossRefPubMedGoogle Scholar
  42. 42.
    Pavlovic A, Slovakova L, Santrucek J (2011) Nutritional benefit from leaf litter utilization in the pitcher plant Nepenthes ampullaria. Plant Cell Environ 34:1865–1873CrossRefPubMedGoogle Scholar
  43. 43.
    Moran JA, Clarke CM, Hawkins BJ (2003) From carnivore to detritivore? Isotopic evidence for leaf litter utilization by the tropical pitcher plant Nepenthes ampullaria. Int J Plant Sci 164:635–639CrossRefGoogle Scholar
  44. 44.
    Buch F, Pauchet Y, Rott M, Mithofer A (2014) Characterization and heterologous expression of a PR-1 protein from traps of the carnivorous plant Nepenthes mirabilis. Phytochemistry 100:43–50CrossRefPubMedGoogle Scholar
  45. 45.
    Buch F, Rott M, Rottloff S, Paetz C, Hilke I, Raessler M, Mithofer A (2013) Secreted pitfall-trap fluid of carnivorous Nepenthes plants is unsuitable for microbial growth. Ann Bot 111:375–383CrossRefPubMedGoogle Scholar
  46. 46.
    Higashi S, Nakashima A, Ozaki H, Abe M, Uchiumi T (1993) Analysis of feeding mechanism in a pitcher of Nepenthes hybrida. J Plant Res 106:47–54CrossRefGoogle Scholar
  47. 47.
    Buckley HL, Miller TE, Ellison AM, Gotelli NJ (2010) Local- to continental-scale variation in the richness and composition of an aquatic food web. Glob Ecol Biogeogr 19:711–723Google Scholar
  48. 48.
    Melo PS, Justo GZ, de Azevedo MB, Duran N, Haun M (2003) Violacein and its beta-cyclodextrin complexes induce apoptosis and differentiation in HL60 cells. Toxicology 186:217–225CrossRefPubMedGoogle Scholar
  49. 49.
    Duran N, Justo GZ, Melo PS, De Azevedo MB, Brito AR, Almeida AB, Haun M (2003) Evaluation of the antiulcerogenic activity of violacein and its modulation by the inclusion complexation with beta-cyclodextrin. Can J Physiol Pharmacol 81:387–396CrossRefPubMedGoogle Scholar
  50. 50.
    Ferreira CV, Bos CL, Versteeg HH, Justo GZ, Duran N, Peppelenbosch MP (2004) Molecular mechanism of violacein-mediated human leukemia cell death. Blood 104:1459–1464CrossRefPubMedGoogle Scholar
  51. 51.
    Lopes SC, Blanco YC, Justo GZ, Nogueira PA, Rodrigues FL, Goelnitz U, Wunderlich G, Facchini G, Brocchi M, Duran N, Costa FT (2009) Violacein extracted from Chromobacterium violaceum inhibits Plasmodium growth in vitro and in vivo. Antimicrob Agents Chemother 53:2149–2152CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Lyu Y, Zheng W, Zheng T, Tian Y (2014) Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1. PLoS One 9:e101438CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Sohn JH, Kwon KK, Kang JH, Jung HB, Kim SJ (2004) Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54:1483–1487CrossRefPubMedGoogle Scholar
  54. 54.
    Kanokratana P, Uengwetwanit T, Rattanachomsri U, Bunterngsook B, Nimchua T, Tangphatsornruang S, Plengvidhya V, Champreda V, Eurwilaichitr L (2011) Insights into the phylogeny and metabolic potential of a primary tropical peat swamp forest microbial community by metagenomic analysis. Microb Ecol 61:518–528CrossRefPubMedGoogle Scholar
  55. 55.
    Sait M, Davis KE, Janssen PH (2006) Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl Environ Microbiol 72:1852–1857CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Burton SA, Prosser JI (2001) Autotrophic ammonia oxidation at low pH through urea hydrolysis. Appl Environ Microbiol 67:2952–2957CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hallberg KB, Coupland K, Kimura S, Johnson DB (2006) Macroscopic streamer growths in acidic, metal-rich mine waters in north wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72:2022–2030CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Hamamura N, Olson SH, Ward DM, Inskeep WP (2005) Diversity and functional analysis of bacterial communities associated with natural hydrocarbon seeps in acidic soils at Rainbow Springs, Yellowstone National Park. Appl Environ Microbiol 71:5943–5950CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lear G, Niyogi D, Harding J, Dong Y, Lewis G (2009) Biofilm bacterial community structure in streams affected by acid mine drainage. Appl Environ Microbiol 75:3455–3460CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Lu S, Gischkat S, Reiche M, Akob DM, Hallberg KB, Kusel K (2010) Ecophysiology of Fe-cycling bacteria in acidic sediments. Appl Environ Microbiol 76:8174–8183CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Bragina A, Maier S, Berg C, Muller H, Chobot V, Hadacek F, Berg G (2011) Similar diversity of alphaproteobacteria and nitrogenase gene amplicons on two related sphagnum mosses. Front Microbiol 2:275PubMedGoogle Scholar
  62. 62.
    Opelt K, Berg G (2004) Diversity and antagonistic potential of bacteria associated with bryophytes from nutrient-poor habitats of the Baltic Sea Coast. Appl Environ Microbiol 70:6569–6579CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Kishimoto N, Kosako Y, Wakao N, Tano T, Hiraishi A (1995) Transfer of Acidiphilium facilis and Acidiphilium aminolytica to the genus Acidocella gen. nov., and emendation of the genus Acidiphilium. Syst Appl Microbiol 18:85–91CrossRefGoogle Scholar
  64. 64.
    Kishimoto N, Kosako Y, Tano T (1993) Acidiphilium aminolytica sp. nov.: an acidophilic chemoorganotrophic bacterium isolated from acidic mineral environment. Curr Microbiol 27:131–136CrossRefPubMedGoogle Scholar
  65. 65.
    Kimoto K, Aizawa T, Urai M, Ve NB, Suzuki K, Nakajima M, Sunairi M (2010) Acidocella aluminiidurans sp. nov., an aluminium-tolerant bacterium isolated from Panicum repens grown in a highly acidic swamp in actual acid sulfate soil area of Vietnam. Int J Syst Evol Microbiol 60:764–768CrossRefPubMedGoogle Scholar
  66. 66.
    Jones RM, Hedrich S, Johnson DB (2013) Acidocella aromatica sp. nov.: an acidophilic heterotrophic alphaproteobacterium with unusual phenotypic traits. Extremophiles 17:841–850CrossRefPubMedGoogle Scholar
  67. 67.
    Servin-Garciduenas LE, Garrett RA, Amils R, Martinez-Romero E (2013) Genome Sequence of the Acidophilic Bacterium Acidocella sp. Strain MX-AZ02. Genome Announc 1Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pattanop Kanokratana
    • 1
    Email author
  • Wuttichai Mhuanthong
    • 1
  • Thanaporn Laothanachareon
    • 1
  • Sithichoke Tangphatsornruang
    • 2
  • Lily Eurwilaichitr
    • 1
  • Trongtham Kruetreepradit
    • 3
  • Shawn Mayes
    • 3
  • Verawat Champreda
    • 1
  1. 1.Enzyme Technology Laboratory, Bioresources Technology UnitNational Center for Genetic Engineering and Biotechnology (BIOTEC)Khlong LuangThailand
  2. 2.Genome InstituteNational Center for Genetic Engineering and BiotechnologyKhlong LuangThailand
  3. 3.Southeast Asian Nepenthes Study and Research Foundation (SEANSRF)Koh SamuiThailand

Personalised recommendations