Skip to main content

Advertisement

Log in

Rainforest Conversion to Rubber Plantation May Not Result in Lower Soil Diversity of Bacteria, Fungi, and Nematodes

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Large areas of rainforest in Asia have been converted to plantations, with uncertain effects on soil biodiversity. Using standard metagenetic methods, we compared the soil biota of bacteria, fungi, and nematodes at three rainforest sites in Malaysia with two rubber plantation sites with similar soils and geology. We predicted the following: (1) that the rubber sites would have a lower α- and β-diversity than the rainforest sites, due to the monospecific canopy cover and intensive management with herbicides, pesticides, and fertilizers, and (2) that due to differences in the physical and biotic environment associated with cultivation, there would be distinct communities of bacteria, fungi, and nematodes. However, regarding (1), the results showed no consistent difference in α- and β-diversity of bacteria, fungi, or nematodes between rainforest and rubber plantation sites. It appears that conversion of rainforest to rubber plantations does not necessarily result in a decrease in diversity of soil biota. It may be that heterogeneity associated with the cultivation regimen compensates for loss of biotically imposed heterogeneity of the original rainforest. Regarding (2), as predicted there were statistically significant differences in community composition between rainforest and rubber plantation for bacteria, fungi, and nematodes. These differences could be related to a range of factors including light level, litter fall composition, pH, C and N, selecting a distinct set of soil taxa, and it is possible that this in itself would affect long-term soil function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Whitmore TC (1990) An introduction to tropical rain forests. Clarendon Press, Oxford, p 226

    Google Scholar 

  2. Hansen MC, Stehman SV, Potapov PV, Loveland TR, Townshend JR, DeFries RS, Pittman KW, Arunarwati B, Stolle F, Steininger MK (2008) Humid tropical forest clearing from 2000 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. PNAS 105:9439–9444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lauber CL, Strickland MS, Bradford MA, Fierer N (2008) The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407–2415

    Article  CAS  Google Scholar 

  4. Wright SJ (2005) Tropical forests in a changing environment. Trends Ecol Evol 20:553–560

    Article  PubMed  Google Scholar 

  5. Sala OE, Chapin FS 3rd, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  6. Nelson GC, Bennett E, Berhe AA, Cassman K, DeFries RS, Dietz T, Dobermann A, Dobson A, Janetos A, Levy MA (2006) Anthropogenic drivers of ecosystem change: an overview. Ecol Soc 11(2)

  7. Brooks TM, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Rylands AB, Konstant WR, Flick P, Pilgrim J, Oldfield S, Magin G (2002) Habitat loss and extinction in the hotspots of biodiversity. Conserv Biol 16:909–923

    Article  Google Scholar 

  8. Edwards F, Edwards D, Larsen T, Hsu W, Benedick S, Chung A, Vun Khen C, Wilcove D, Hamer K (2013) Does logging and forest conversion to oil palm agriculture alter functional diversity in a biodiversity hotspot? Anim Conserv 17:163–173

    Article  PubMed  PubMed Central  Google Scholar 

  9. Brooks TM, Mittermeier RA, da Fonseca GA, Gerlach J, Hoffmann M, Lamoreux JF, Mittermeier CG, Pilgrim JD, Rodrigues AS (2006) Global biodiversity conservation priorities. Science 313:58–61

    Article  CAS  PubMed  Google Scholar 

  10. Achard F, Eva HD, Stibig H-J, Mayaux P, Gallego J, Richards T, Malingreau J-P (2002) Determination of deforestation rates of the world’s humid tropical forests. Science 297:999–1002

    Article  CAS  PubMed  Google Scholar 

  11. Hooper DU, Chapin Iii F, Ewel J, Hector A, Inchausti P, Lavorel S, Lawton J, Lodge D, Loreau M, Naeem S (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  12. Edwards DP, Fisher B, Wilcove DS (2012) High conservation value or high confusion value? Sustainable agriculture and biodiversity conservation in the tropics. Conserv Lett 5:20–27

    Article  Google Scholar 

  13. Qiu J (2009) Where the rubber meets the garden. Nat News 457:246–247

    Article  CAS  Google Scholar 

  14. Ziegler AD, Fox JM, Xu J (2009) The rubber juggernaut. Science 324:1024–1025

    Article  CAS  PubMed  Google Scholar 

  15. Qiu J (2010) China drought highlights future climate threats. Nat News 465:142–143

    Article  CAS  Google Scholar 

  16. Tan ZH, Zhang YP, Song QH, Liu WJ, Deng XB, Tang JW, Deng Y, Zhou WJ, Yang LY, Yu GR (2011) Rubber plantations act as water pumps in tropical China. Geophys Res Lett 38(24)

  17. Zhou H, Ai X, Zhang H, Zhang L, Wei L (2012) Species diversity of understorey vegetation in rubber plantations in Xishuangbanna. Chin J Trop Crop 33:1444–1449

    Google Scholar 

  18. Aratrakorn S, Thunhikorn S, Donald PF (2006) Changes in bird communities following conversion of lowland forest to oil palm and rubber plantations in southern Thailand. Bird Conserv Int 16:71–82

    Article  Google Scholar 

  19. Phommexay P, Satasook C, Bates P, Pearch M, Bumrungsri S (2011) The impact of rubber plantations on the diversity and activity of understorey insectivorous bats in southern Thailand. Biodivers Conserv 20:1441–1456

    Article  Google Scholar 

  20. Meng L-Z, Martin K, Weigel A, Liu J-X (2012) Impact of rubber plantation on carabid beetle communities and species distribution in a changing tropical landscape (Southern Yunnan, China). J Insect Conserv 16:423–432

    Article  Google Scholar 

  21. Li H, Ma Y, Liu W, Liu W (2012) Soil changes induced by rubber and tea plantation establishment: comparison with tropical rain forest soil in Xishuangbanna, SW China. Environ Manag 50:837–848

    Article  Google Scholar 

  22. Neher D (1999) Soil community composition and ecosystem processes: comparing agricultural ecosystems with natural ecosystems. Agrofor Syst 45:159–185

    Article  Google Scholar 

  23. Tate III, Robert L. (1987) Soil organic matter. Biol Ecol Eff

  24. van Straaten O, Corre MD, Wolf K, Tchienkoua M, Cuellar E, Matthews RB, Veldkamp E (2015) Conversion of lowland tropical forests to tree cash crop plantations loses up to one-half of stored soil organic carbon. PNAS 112(32):9956–9960

    Article  PubMed  PubMed Central  Google Scholar 

  25. de Blécourt M, Brumme R, Xu J, Corre MD, Veldkamp E (2013) Soil carbon stocks decrease following conversion of secondary forests to rubber (Hevea brasiliensis) plantations. PLoS One 8(7):e69357

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ou W, Liang W, Jiang Y, Li Q, Wen D (2005) Vertical distribution of soil nematodes under different land use types in an aquic brown soil. Pedobiologia 49:139–148

    Article  Google Scholar 

  27. Edwards DP, Larsen TH, Docherty TD, Ansell FA, Hsu WW, Derhe MA, Hamer KC, Wilcove DS (2011) Degraded lands worth protecting: the biological importance of Southeast Asia’s repeatedly logged forests. Proc Biol Sci R Soc 278:82–90

    Article  Google Scholar 

  28. Warren‐Thomas E, Dolman PM, Edwards DP (2015) Increasing demand for natural rubber necessitates a robust sustainability initiative to mitigate impacts on tropical biodiversity. Conserv Lett 8(4):230–241

    Article  Google Scholar 

  29. Fox J, Castella J-C (2013) Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: what are the prospects for smallholders? J Peasant Stu 40:155–170

    Article  Google Scholar 

  30. Priyadarshan P, Hoa T, Huasun H, De Gonçalves P (2005) Yielding potential of rubber (Hevea brasiliensis) in sub-optimal environments. J Crop Improv 14:221–247

    Article  Google Scholar 

  31. Bahamondez CC, Csoka T, Drichi P, Filipchuk P, De Jong A, Álvarez BH (2010) Global forest resources assessment 2010 main report. FAO

  32. Gouyon A, de Foresta H, Levang P (1993) Does ‘jungle rubber’deserve its name? An analysis of rubber agroforestry systems in southeast Sumatra. Agrofor Syst 22:181–206

    Article  Google Scholar 

  33. Tata HL, Rasnovi S, van Noordwijk M, Werger MJ (2008) Can rubber agroforests conserve biodiversity in Jambi (Sumatra)? In Proceedings of Indonesian Students’ Scientific Meeting

  34. Li Z, Fox JM (2012) Mapping rubber tree growth in mainland Southeast Asia using time-series MODIS 250 m NDVI and statistical data. Appl Geogr 32:420–432

    Article  Google Scholar 

  35. Ratnasingam J, Ioras F, Wenming L (2011) Sustainability of the rubberwood sector in Malaysia. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39:305–311

    Google Scholar 

  36. Hassan N, Hamzah HHM, Zain SMM (2013) A goal programming approach for rubber production in Malaysia. Am-Eurasian J Sus Agric 7:50–53

    Google Scholar 

  37. Mohammadi M, Man HC, Hassan MA, Yee PL (2013) Treatment of wastewater from rubber industry in Malaysia. Afr J Biotechnol 9:6233–6243

    Google Scholar 

  38. Bossio D, Girvan MS, Verchot L, Bullimore J, Borelli T, Albrecht A, Scow K, Ball AS, Pretty J, Osborn AM (2005) Soil microbial community response to land use change in an agricultural landscape of Western Kenya. Microb Ecol 49:50–62

    Article  CAS  PubMed  Google Scholar 

  39. Kerfahi D, Tripathi BM, Lee J, Edwards DP, Adams JM (2014) The impact of selective-logging and forest clearance for oil palm on fungal communities in Borneo. PLoS One 9:e111525

    Article  PubMed  PubMed Central  Google Scholar 

  40. Lee-Cruz L, Edwards DP, Tripathi BM, Adams JM (2013) Impact of logging and forest conversion to oil palm plantations on soil bacterial communities in Borneo. Appl Environ Microb 79:7290–7297

    Article  CAS  Google Scholar 

  41. Tripathi BM, Edwards DP, Mendes LW, Kim M, Dong K, Kim H, Adams JM (2016) The impact of tropical forest logging and oil palm agriculture on the soil microbiome. Mol Ecol. doi:10.1111/mec.13620

    PubMed  Google Scholar 

  42. Krashevska V, Klarner B, Widyastuti R, Maraun M, Scheu S (2015) Impact of tropical lowland rainforest conversion into rubber and oil palm plantations on soil microbial communities. Biol Fert Soils 51(6):697–705

    Article  CAS  Google Scholar 

  43. Schneider D, Engelhaupt M, Allen K, Kurniawan S, Krashevska V, Heinemann M, Scheu S (2015) Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia). Front Microbiol, 6. http://journal.frontiersin.org/article/10.3389/fmicb.2015.01339/full

  44. Cannon CH, Peart DR, Leighton M (1998) Tree species diversity in commercially logged Bornean rainforest. Science 281(5381):1366–1368

    Article  CAS  PubMed  Google Scholar 

  45. Chazdon RL (2003) Tropical forest recovery: legacies of human impact and natural disturbances. Perspect Plant Ecol Evol Syst 6(1):51–71

    Article  Google Scholar 

  46. Edwards DP, Hodgson JA, Hamer KC, Mitchell SL, Ahmad AH, Cornell SJ, Wilcove DS (2010) Wildlife‐friendly oil palm plantations fail to protect biodiversity effectively. Conserv Lett 3(4):236–242

    Article  Google Scholar 

  47. Fierer N, Schimel JP, Holden PA (2003) Variations in microbial community composition through two soil depth profiles. Soil Biol Biochem 35(1):167–176

    Article  CAS  Google Scholar 

  48. Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450(7167):277–280

    Article  CAS  PubMed  Google Scholar 

  49. Thorne G (1961) Principles of nematology. McGraw-Hill, New York

    Google Scholar 

  50. Porazinska DL, Giblin-Davis RM, Faller L, Farmerie W, Kanzaki N, Morris K, Powers TO, Tucker AE, Sung W, Thomas WK (2009) Evaluating high-throughput sequencing as a method for metagenomic analysis of nematode diversity. Mol Ecol Resour 9:1439–1450

    Article  CAS  PubMed  Google Scholar 

  51. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinformatics 13(1):31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bengtsson‐Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, Amend A (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol Evol 4(10):914–919

    Google Scholar 

  54. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Abarenkov K, Nilsson RH, Larsson KH, Alexander IJ, Eberhardt U, Erland S, Hoiland K, Kjoller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Ursing BM, Vralstad T, Liimatainen K, Peintner U, Koljalg U (2010) The UNITE database for molecular identification of fungi—recent updates and future perspectives. New Phytol 186:281–285

    Article  PubMed  Google Scholar 

  56. Tedersoo L, May TW, Smith ME (2010) Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20(4):217–263

    Article  PubMed  Google Scholar 

  57. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Huttley GA (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  59. Anderson MJ, Crist TO, Chase JM, Vellend M, Inouye BD, Freestone AL, Sanders NJ, Cornell HV, Comita LS, Davies KF (2011) Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol Lett 14:19–28

    Article  PubMed  Google Scholar 

  60. Whittaker RH (1960) Vegetation of the Siskiyou mountains, Oregon and California. Ecol Monogr 30:279–338

    Article  Google Scholar 

  61. Koleff P, Gaston KJ, Lennon JJ (2003) Measuring beta diversity for presence-absence data. J Anim Ecol 72:367–382

    Article  Google Scholar 

  62. Varghese Y, Sethuraj M, Mathew N (1992) Natural Rubber: biology, cultivation and technology. Developments in Crop Science 23. Elsevier, Amsterdam

  63. Xiao HF, Tian YH, Zhou HP, Ai XS, Yang XD, Schaefer DA (2014) Intensive rubber cultivation degrades soil nematode communities in Xishuangbanna, Southwest China. Soil Biol Biochem 76:161–169

    Article  CAS  Google Scholar 

  64. Allen K, Corre MD, Tjoa A, Veldkamp E (2015) Soil nitrogen-cycling responses to conversion of lowland forests to oil palm and rubber plantations in Sumatra, Indonesia. PLoS One 10(7):e0133325

    Article  PubMed  Google Scholar 

  65. Aber JD, Melillo JM (1980) Litter decomposition: measuring relative contributions of organic matter and nitrogen to forest soils. Can J Bot 58(4):416–421

    CAS  Google Scholar 

  66. Fierer N, Bradford MA, Jackson RB (2007) Toward an ecological classification of soil bacteria. Ecology 88(6):1354–1364

    Article  PubMed  Google Scholar 

  67. Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JM, McCulley RL (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. PNAS 112(35):10967–10972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Mendes LW, Tsai SM, Navarrete AA, De Hollander M, van Veen JA, Kuramae EE (2015) Soil-borne microbiome: linking diversity to function. Microb Ecol 70(1):255–265

    Article  CAS  PubMed  Google Scholar 

  69. Fisher B, Edwards DP, Giam X, Wilcove DS (2011) The high costs of conserving Southeast Asia’s lowland rainforests. Front Ecol Environ 9(6):329–334

    Article  Google Scholar 

  70. Sirikantaramas S, Sugioka N, Lee SS, Mohamed LA, Lee HS, Szmidt AE, Yamazaki T (2003) Molecular identification of ectomycorrhizal fungi associated with Dipterocarpaceae. Tropics 13(2):69–77

    Article  Google Scholar 

  71. Yeates GW, Bongers T, De Goede RG, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25:315–331

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Ives AR, Carpenter SR (2007) Stability and diversity of ecosystems. Science 317:58–62

    Article  CAS  PubMed  Google Scholar 

  73. Rooney N, McCann KS (2012) Integrating food web diversity, structure and stability. Trends Ecol Evol 27:40–46

    Article  PubMed  Google Scholar 

  74. Loreau M, Mazancourt C (2013) Biodiversity and ecosystem stability: a synthesis of underlying mechanisms. Ecol Lett 16:106–115

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan M. Adams.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 33 kb)

ESM 2

(DOCX 185 kb)

ESM 3

(DOCX 20 kb)

ESM 4

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerfahi, D., Tripathi, B.M., Dong, K. et al. Rainforest Conversion to Rubber Plantation May Not Result in Lower Soil Diversity of Bacteria, Fungi, and Nematodes. Microb Ecol 72, 359–371 (2016). https://doi.org/10.1007/s00248-016-0790-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-016-0790-0

Keywords

Navigation