Abstract
Environmentally transmitted opportunistic pathogens shuttle between two substantially different environments: outside-host and within-host habitats. These environments differ from each other especially with respect to nutrient availability. Consequently, the pathogens are required to regulate their behavior in response to environmental cues in order to survive, but how nutrients control the virulence in opportunistic pathogens is still poorly understood. In this study, we examined how nutrient level in the outside-host environment affects the gene expression of putative virulence factors of the opportunistic fish pathogen Flavobacterium columnare. The impact of environmental nutrient concentration on bacterial virulence was explored by cultivating the bacteria in various nutrient conditions, measuring the gene expression of putative virulence factors with RT-qPCR and, finally, experimentally challenging rainbow trout (Oncorhynchus mykiss) fry with these bacteria. Our results show that increased environmental nutrient concentration can increase the expression of putative virulence genes, chondroitinase (cslA) and collagenase, in the outside-host environment and may lead to more rapid fish mortality. These findings address that the environmental nutrients may act as significant triggers of virulence gene expression and therefore contribute to the interaction between an environmentally transmitted opportunistic pathogen and its host.
This is a preview of subscription content, access via your institution.



References
Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245
Arias CR, Lafrentz S, Cai W, Olivares-Fuster O (2012) Adaptive response to starvation in the fish pathogen Flavobacterium columnare: cell viability and ultrastructural changes. BMC Microbiol 12:266
Bernardet JF (1997) Immunization with bacterial antigens: Flavobacterium and Flexibacter infections. Dev Biol Stand 90:179
Bertolini JM, Rohovec JS (1992) Electrophoretic detection of proteases from different Flexibacter-Columnaris strains and assessment of their variability. Dis Aquat Org 12:121
Brown SP, Cornforth DM, Mideo N (2012) Evolution of virulence in opportunistic pathogens: generalism, plasticity, and control. Trends Microbiol 20:336
Bruno J, Petes L, Harvell C, Hettinger A (2003) Nutrient enrichment can increase the severity of coral diseases. Ecol Lett 6:1056
Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611
Casadevall A, Pirofski L (2001) Host-pathogen interactions: the attributes of virulence. J Infect Dis 184:337
Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015) Secretion systems in gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13:343
Dalebroux ZD, Svensson SL, Gaynor EC, Swanson MS (2010) ppGpp conjures bacterial virulence. Microbiol Mol Biol Rev 74:171
Declercq AM, Haesebrouck F, Van den Broeck W, Bossier P, Decostere A (2013) Columnaris disease in fish: a review with emphasis on bacterium-host interactions. Vet Res 44:27
Decostere A, Haesebrouck F, Devriese LA (1997) Shieh medium supplemented with tobramycin for selective isolation of Flavobacterium columnare (Flexibacter columnaris) from diseased fish. J Clin Microbiol 35:322
Duchaud E, Boussaha M, Loux V, Bernardet JF, Michel C, Kerouault B, Mondot S, Nicolas P, Bossy R, Caron C, Bessieres P, Gibrat JF, Claverol S, Dumetz F, Le Henaff M, Benmansour A (2007) Complete genome sequence of the fish pathogen Flavobacterium psychrophilum. Nat Biotechnol 25:763
Dumpala PR, Gulsoy N, Lawrence ML, Karsi A (2010) Proteomic analysis of the fish pathogen Flavobacterium columnare. Proteome Sci 8:26
Gorke B, Stulke J (2008) Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 6:613
Guijarro JA, Cascales D, Garcia-Torrico AI, Garcia-Dominguez M, Mendez J (2015) Temperature-dependent expression of virulence genes in fish-pathogenic bacteria. Front Microbiol 6:700
Hall SR, Knight CJ, Becker CR, Duffy MA, Tessier AJ, Caceres CE (2009) Quality matters: resource quality for hosts and the timing of epidemics. Ecol Lett 12:118
Harrington DJ (1996) Bacterial collagenases and collagen-degrading enzymes and their potential role in human disease. Infect Immun 64:1885
Houle MA, Grenier D, Plamondon P, Nakayama K (2003) The collagenase activity of Porphyromonas gingivalis is due to Arg-gingipain. FEMS Microbiol Lett 221:181
Kassegne K, Hu W, Ojcius DM, Sun D, Ge Y, Zhao J, Yang XF, Li L, Yan J (2014) Identification of collagenase as a critical virulence factor for invasiveness and transmission of pathogenic Leptospira species. J Infect Dis 209:1105
Ketola T, Mikonranta L, Laakso J, Mappes J (2016) Different food sources elicit fast changes to bacterial virulence. Biol Lett 12:0150660
Kunttu HM, Sundberg L-R, Pulkkinen K, Valtonen ET (2012) Environment may be the source of Flavobacterium columnare outbreaks at fish farms. Environ Microbiol Rep 4:398
Kunttu HM, Jokinen EI, Valtonen ET, Sundberg L-R (2011) Virulent and nonvirulent Flavobacterium columnare colony morphologies: characterization of chondroitin AC lyase activity and adhesion to polystyrene. J Appl Microbiol 111:1319
Kunttu HM, Suomalainen L-R, Jokinen EI, Valtonen ET (2009) Flavobacterium columnare colony types: connection to adhesion and virulence? Microb Pathog 46:21
Kunttu HM, Valtonen ET, Jokinen EI, Suomalainen L-R (2009) Saprophytism of a fish pathogen as a transmission strategy. Epidemics 1:96
Laanto E, Sundberg L-R, Bamford JKH (2011) Phage specificity of the freshwater fish pathogen Flavobacterium columnare. Appl Environ Microbiol 77:7868
Laanto E, Penttinen RK, Bamford JKH, Sundberg L-R (2014) Comparing the different morphotypes of a fish pathogen—implications for key virulence factors in Flavobacterium columnare. BMC Microbiol 14:170
Laanto E, Bamford JKH, Laakso J, Sundberg L-R (2012) Phage-driven loss of virulence in a fish pathogenic bacterium. Plos One 7:e53157
Lantz M (1997) Are bacterial proteases important virulence factors? J Periodont Res 32:126
Lebrun I, Marques-Porto R, Pereira AS, Pereira A, Perpetuo EA (2009) Bacterial toxins: an overview on bacterial proteases and their action as virulence factors. Mini-Rev Med Chem 9:820
Li N, Qin T, Zhang XL, Huang B, Liu ZX, Xie HX, Zhang J, McBride MJ, Nie P (2015) Gene deletion strategy to examine the involvement of the two chondroitin lyases in Flavobacterium columnare virulence. Appl Environ Microbiol 81:7394
Li N, Zhang J, Zhang LQ, Nie P (2010) Difference in genes between a high virulence strain G(4) and a low virulence strain G(18) of Flavobacterium columnare by using suppression subtractive hybridization. J Fish Dis 33:403
McKenzie VJ, Townsend AR (2007) Parasitic and infectious disease responses to changing global nutrient cycles. Ecohealth 4:384
Nakayama H, Tanaka K, Teramura N, Hattori S (2015) Expression of collagenase in Flavobacterium psychrophilum isolated from cold-water disease-affected ayu (Plecoglossus altivelis). Biosci Biotechnol Biochem 80:135
Olivares-Fuster O, Arias CR (2008) Use of suppressive subtractive hybridization to identify Flavobacterium columnare DNA sequences not shared with Flavobacterium johnsoniae. Lett Appl Microbiol 46:605
Olivares-Fuster O, Baker JL, Terhune JS, Shoemaker CA, Klesius PH, Arias CR (2007) Host-specific association between Flavobacterium columnare genomovars and fish species. Syst Appl Microbiol 30:624
Oogai Y, Matsuo M, Hashimoto M, Kato F, Sugai M, Komatsuzawa H (2011) Expression of virulence factors by Staphylococcus aureus grown in serum. Appl Environ Microbiol 77:8097
Ostland VE, Byrne PJ, Hoover G, Ferguson HW (2000) Necrotic myositis of rainbow trout, Oncorhynchus mykiss (Walbaum): proteolytic characteristics of a crude extracellular preparation from Flavobacterium psychrophilum. J Fish Dis 23:329
Pfluger-Grau K, Gorke B (2010) Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol 18:205
Pulkkinen K, Suomalainen L-R, Read AF, Ebert D, Rintamaki P, Valtonen ET (2010) Intensive fish farming and the evolution of pathogen virulence: the case of columnaris disease in Finland. Proc Biol Sci 277:593
Rao M, Tanksale A, Ghatge M, Deshpande V (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597
Revetta RP, Rodgers MR, Kinkle BK (2005) Isolation and identification of freshwater bacteria antagonistic to Giardia intestinalis cysts. J Water Health 3:83
Rohmer L, Hocquet D, Miller SI (2011) Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 19:341
Rudek W, Haque R (1976) Extracellular enzymes of genus Bacteroides. J Clin Microbiol 4:458
Salyers AA, Kotarski SF (1980) Induction of chondroitin sulfate lyase activity in Bacteroides thetaiotaomicron. J Bacteriol 143:781
Somerville GA, Proctor RA (2009) At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 73:233
Song Y, Fryer J, Rohover J (1988) Comparison of six media for the cultivation of Flexibacter-Columnaris. Fish Pathol 23:91
Stringer-Roth KM, Yunghans W, Caslake LF (2002) Differences in chondroitin AC lyase activity of Flavobacterium columnare isolates. J Fish Dis 25:687
Sundberg L-R, Kunttu HM, Valtonen ET (2014) Starvation can diversify the population structure and virulence strategies of an environmentally transmitting fish pathogen. BMC Microbiol 14:67
Sundell K, Wiklund T (2015) Characteristics of epidemic and sporadic Flavobacterium psychrophilum sequence types. Aquaculture 441:51
Suomalainen L-R, Tiirola M, Valtonen ET (2006) Chondroitin AC lyase activity is related to virulence of fish pathogenic Flavobacterium columnare. J Fish Dis 29:757
Tekedar HC, Karsi A, Gillaspy AF, Dyer DW, Benton NR, Zaitshik J, Vamenta S, Banes MM, Gulsoy N, Aboko-Cole M, Waldbieser GC, Lawrence ML (2012) Genome sequence of the fish pathogen Flavobacterium columnare ATCC 49512. J Bacteriol 194:2763
Thomas F, Hehemann J, Rebuffet E, Czjzek M, Michel G (2011) Environmental and gut Bacteroidetes: the food connection. Front Microbiol 2:93
Tripathi NK, Latimer KS, Gregory CR, Ritchie BW, Wooley RE, Walker RL (2005) Development and evaluation of an experimental model of cutaneous columnaris disease in koi Cyprinus carpio. J Vet Diagn Invest 17:45
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:RESEARCH0034
Wagner B, Wise D, Khoo L, Terhune J (2002) The epidemiology of bacterial diseases in food-size channel catfish. J Aquat Anim Health 14:263
Wakabayashi H (1991) Effect of environmental conditions on the infectivity of Flexibacter-Columnaris to fish. J Fish Dis 14:279
Wedekind C, Gessner MO, Vazquez F, Maerki M, Steiner D (2010) Elevated resource availability sufficient to turn opportunistic into virulent fish pathogens. Ecology 91:1251
Zenobia C, Hajishengallis G (2015) Porphyromonas gingivalis virulence factors involved in subversion of leukocytes and microbial dysbiosis. Virulence 6:236
Acknowledgments
The authors would like to thank Prof. Annemie Decostere for commenting on the manuscript and Ms Irene Helkala, Ville Hoikkala, MSc, Dr. Elina Laanto, Katja Neuvonen, MSc, Marjut Paljakka, MSc, Mr Petri Papponen, Dr. Katja Pulkkinen, and Dr. Ilona Rissanen, for assistance in the laboratory.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The fish experiments were conducted according to the Finnish Act on Use of Animals for Experimental Purposes, under permission ESAVI-3940/04.10.07/2015 granted for L-RS by the National Animal Experiment Board at the Regional State Administrative Agency for Southern Finland.
Funding Information
This work was funded by Academy of Finland grant nos. 252411 (the Centre of Excellence in Biological Interactions 2012–2017) and 272995 (for L-RS), Maj and Tor Nessling Foundation, and the Doctoral Programme in Biological and Environmental Science (University of Jyväskylä). The funders had no role in study design, data collection, and interpretation, or the decision to submit the work for publication in Microbial Ecology.
Conflict of Interest
The authors declare that they have no conflict of interest.
Electronic supplementary material
Below is the link to the electronic supplementary material.
ESM 1
(PDF 306 kb)
Rights and permissions
About this article
Cite this article
Penttinen, R., Kinnula, H., Lipponen, A. et al. High Nutrient Concentration Can Induce Virulence Factor Expression and Cause Higher Virulence in an Environmentally Transmitted Pathogen. Microb Ecol 72, 955–964 (2016). https://doi.org/10.1007/s00248-016-0781-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00248-016-0781-1
Keywords
- Chondroitinase
- Collagenase
- Colony type
- Flavobacterium columnare
- Nutrients
- RT-qPCR
- Virulence factors