Microbial Ecology

, Volume 72, Issue 2, pp 428–442 | Cite as

Mineral Type and Solution Chemistry Affect the Structure and Composition of Actively Growing Bacterial Communities as Revealed by Bromodeoxyuridine Immunocapture and 16S rRNA Pyrosequencing

Soil Microbiology

Abstract

Understanding how minerals affect bacterial communities and their in situ activities in relation to environmental conditions are central issues in soil microbial ecology, as minerals represent essential reservoirs of inorganic nutrients for the biosphere. To determine the impact of mineral type and solution chemistry on soil bacterial communities, we compared the diversity, composition, and functional abilities of a soil bacterial community incubated in presence/absence of different mineral types (apatite, biotite, obsidian). Microcosms were prepared containing different liquid culture media devoid of particular essential nutrients, the nutrients provided only in the introduced minerals and therefore only available to the microbial community through mineral dissolution by biotic and/or abiotic processes. By combining functional screening of bacterial isolates and community analysis by bromodeoxyuridine DNA immunocapture and 16S rRNA gene pyrosequencing, we demonstrated that bacterial communities were mainly impacted by the solution chemistry at the taxonomic level and by the mineral type at the functional level. Metabolically active bacterial communities varied with solution chemistry and mineral type. Burkholderia were significantly enriched in the obsidian treatment compared to the biotite treatment and were the most effective isolates at solubilizing phosphorous or mobilizing iron, in all the treatments. A detailed analysis revealed that the 16S rRNA gene sequences of the OTUs or isolated strains assigned as Burkholderia in our study showed high homology with effective mineral-weathering bacteria previously recovered from the same experimental site.

Keywords

Forest soil Minerals BrdU immunocapture 16S rDNA-based pyrosequencing Culture-dependent approach 

Supplementary material

248_2016_774_MOESM1_ESM.pdf (117 kb)
Fig. S1(PDF 117 kb)
248_2016_774_MOESM2_ESM.pdf (60 kb)
Fig. S2(PDF 60 kb)
248_2016_774_MOESM3_ESM.pdf (122 kb)
Fig. S3(PDF 121 kb)
248_2016_774_MOESM4_ESM.xlsx (49 kb)
Table S1(XLSX 48 kb)
248_2016_774_MOESM5_ESM.xlsx (68 kb)
Table S2(XLSX 67 kb)

References

  1. 1.
    Uroz S, Kelly LC, Turpault M-P, Lepleux C, Frey-Klett P (2015) The mineralosphere concept: mineralogical control of the distribution and function of mineral-associated bacterial communities. Trends MicrobiolGoogle Scholar
  2. 2.
    Brantley SL (2008) Kinetics of mineral dissolution. In: Kinetics of water-rock interaction (pp. 151–210). Springer, New YorkGoogle Scholar
  3. 3.
    Staudigel H, Furnes H, McLoughlin N, Banerjee NR, Connell LB, Templeton A (2008) 3.5 billion years of glass bioalteration: volcanic rocks as a basis for microbial life? Earth Sci Rev 89(3):156–176CrossRefGoogle Scholar
  4. 4.
    Drever JI (Ed) (2005) Surface and ground water, weathering, and soils: treatise on geochemistry (vol. 5). ElsevierGoogle Scholar
  5. 5.
    Banfield JF, Barker WW, Welch SA, Taunton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc Natl Acad Sci 96(7):3404–3411CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Courty PE, Buée M, Diedhiou AG, Frey-Klett P, Le Tacon F, Rineau F, Turpault M-P, Uroz S, Garbaye J (2010) The role of ectomycorrhizal communities in forest ecosystem processes: new perspectives and emerging concepts. Soil Biol Biochem 42(5):679–698CrossRefGoogle Scholar
  7. 7.
    Hinsinger P, Barros ONF, Benedetti MF, Noack Y, Callot G (2001) Plant-induced weathering of a basaltic rock: experimental evidence. Geochim Cosmochim Acta 65(1):137–152CrossRefGoogle Scholar
  8. 8.
    Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16(5):248–254CrossRefPubMedGoogle Scholar
  9. 9.
    Smits MM, Bonneville S, Benning LG, Banwart SA, Leake JR (2012) Plant-driven weathering of apatite—the role of an ectomycorrhizal fungus. Geobiology 10(5):445–456CrossRefPubMedGoogle Scholar
  10. 10.
    Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17(8):378–387CrossRefPubMedGoogle Scholar
  11. 11.
    Bonneville S, Morgan DJ, Schmalenberger A, Bray A, Brown A, Banwart SA, Benning LG (2011) Tree-mycorrhiza symbiosis accelerate mineral weathering: evidences from nanometer-scale elemental fluxes at the hypha–mineral interface. Geochim Cosmochim Acta 75(22):6988–7005CrossRefGoogle Scholar
  12. 12.
    Rineau F, Courty PE, Uroz S, Buée M, Garbaye J (2008) Simple microplate assays to measure iron mobilization and oxalate secretion by ectomycorrhizal tree roots. Soil Biol Biochem 40(9):2460–2463CrossRefGoogle Scholar
  13. 13.
    Blum JD, Klaue A, Nezat CA, Driscoll CT, Johnson CE, Siccama TG, Eagar C, Fahey TJ, Likens GE (2002) Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystems. Nature 417(6890):729–731CrossRefPubMedGoogle Scholar
  14. 14.
    Jongmans AG, Van Breemen N, Lundström U, Van Hees PAW, Finlay RD, Srinivasan M, Unestam T, Giesler R, Melkerund P-A, Olsson M (1997) Rock-eating fungi. Nature 389(6652):682–683CrossRefGoogle Scholar
  15. 15.
    Calvaruso C, Turpault MP, Frey-Klett P (2006) Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microbiol 72(2):1258–1266CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Puente ME, Li CY, Bashan Y (2004) Microbial populations and activities in the rhizoplane of rock weathering desert plants. II. Growth promotion of cactus seedlings. Plant Biol 6(5):643–650CrossRefPubMedGoogle Scholar
  17. 17.
    Uroz S, Oger P, Lepleux C, Collignon C, Frey-Klett P, Turpault MP (2011) Bacterial weathering and its contribution to nutrient cycling in temperate forest ecosystems. Res Microbiol 162(9):820–831CrossRefPubMedGoogle Scholar
  18. 18.
    Collignon C, Uroz S, Turpault MP, Frey-Klett P (2011) Seasons differently impact the structure of mineral weathering bacterial communities in beech and spruce stands. Soil Biol Biochem 43(10):2012–2022CrossRefGoogle Scholar
  19. 19.
    Turpault M-P, Nys C, Calvaruso C (2009) Rhizosphere impact on the dissolution of test minerals in a forest ecosystem. Geoderma 153(1):147–154Google Scholar
  20. 20.
    Gleeson DB, Clipson N, Melville K, Gadd GM, McDermott FP (2005) Characterization of fungal community structure on a weathered pegmatitic granite. Microb Ecol 50(3):360–368CrossRefPubMedGoogle Scholar
  21. 21.
    Gleeson DB, Kennedy NM, Clipson N, Melville K, Gadd GM, McDermott FP (2006) Characterization of bacterial community structure on a weathered pegmatitic granite. Microb Ecol 51(4):526–534CrossRefPubMedGoogle Scholar
  22. 22.
    Hutchens E (2009) Microbial selectivity on mineral surfaces: possible implications for weathering processes. Fungal Biol Rev 23(4):115–121CrossRefGoogle Scholar
  23. 23.
    Hutchens E, Gleeson D, McDermott F, Miranda-CasoLuengo R, Clipson N (2010) Meter-scale diversity of microbial communities on a weathered pegmatite granite outcrop in the Wicklow Mountains, Ireland; evidence for mineral induced selection? Geomicrobiol J 27(1):1–14CrossRefGoogle Scholar
  24. 24.
    Kelly LC, Cockell CS, Piceno YM, Andersen GL, Thorsteinsson T, Marteinsson V (2010) Bacterial diversity of weathered terrestrial Icelandic volcanic glasses. Microb Ecol 60:740–752CrossRefPubMedGoogle Scholar
  25. 25.
    Kelly LC, Cockell CS, Herrera-Belaroussi A, Piceno Y, Andersen G, DeSantis T, Brodie E, Thorsteinsson T, Marteinsson V, Poly F, LeRoux X (2011) Bacterial diversity of terrestrial crystalline volcanic rocks, Iceland. Microb Ecol 62:69–79CrossRefPubMedGoogle Scholar
  26. 26.
    Olsson-Francis K, Van Houdt R, Mergeay M, Leys N, Cockell CS (2010) Microarray analysis of a microbe–mineral interaction. Geobiology 8:446–456CrossRefPubMedGoogle Scholar
  27. 27.
    Wang W, Lian B, Pan L (2014) An RNA-sequencing study of the genes and metabolic pathways involved in Aspergillus niger weathering of potassium feldspar. Geomicrobiol J (just-accepted), 00-00Google Scholar
  28. 28.
    Bryce CC, Le Bihan T, Martin SF, Harrison JP, Bush T, Spears B, Moore A, Leys N, Byloos B, Cockell CS (2016) Rock geochemistry induces stress and starvation responses in the bacterial proteome. Environ Microbiol. In press.Google Scholar
  29. 29.
    Artursson V, Finlay RD, Jansson JK (2005) Combined bromodeoxyuridine immunocapture and terminal‐restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ Microbiol 7(12):1952–1966CrossRefPubMedGoogle Scholar
  30. 30.
    Borneman J (1999) Culture-independent identification of microorganisms that respond to specified stimuli. Appl Environ Microbiol 65(8):3398–3400PubMedPubMedCentralGoogle Scholar
  31. 31.
    Galand PE, Alonso-Sáez L, Bertilsson S, Lovejoy C, Casamayor EO (2013) Contrasting activity patterns determined by BrdU incorporation in bacterial ribotypes from the Arctic Ocean in winter. Front Microbiol 4Google Scholar
  32. 32.
    McMahon SK, Wallenstein MD, Schimel JP (2011) A cross-seasonal comparison of active and total bacterial community composition in Arctic tundra soil using bromodeoxyuridine labeling. Soil Biol Biochem 43(2):287–295CrossRefGoogle Scholar
  33. 33.
    Mou X, Sun S, Edwards RA, Hodson RE, Moran MA (2008) Bacterial carbon processing by generalist species in the coastal ocean. Nature 451(7179):708–711CrossRefPubMedGoogle Scholar
  34. 34.
    Mareschal L (2008) Effet des substitutions d’essences forestières sur l’évolution des sols et de leur mineralogie. PhD Thesis, University of NancyGoogle Scholar
  35. 35.
    Lindahl V, Bakken LR (1995) Evaluation of methods for extraction of bacteria from soil. FEMS Microbiol Ecol 16(2):135–142CrossRefGoogle Scholar
  36. 36.
    Bushnell LC, Haas HF (1941) The utilization of certain hydrocarbons by microorganisms. J Bacteriol 41:653–673PubMedPubMedCentralGoogle Scholar
  37. 37.
    Nautiyal CS, Bhadauria S, Kumar P, Lal H, Mondal R, Verma D (2000) Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiol Lett 182(2):291–296CrossRefPubMedGoogle Scholar
  38. 38.
    Edwards U, Rogall T, Blöcker H, Emde M, Böttger EC (1989) Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17(19):7843–7853CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lane DJ (1991) 16S/23S rRNA sequencing. Nucleic acid techniques in bacterial systematics, 125–175Google Scholar
  40. 40.
    On SLW, Atabay HI, Corry JEL, Harrington CS, Vandamme P (1998) Emended description of Campylobacter sputorum and revision of its infrasubspecific (biovar) divisions, including C. sputorum biovar paraureolyticus, a urease-producing variant from cattle and humans. Int J Syst Bacteriol 48(1):195–206CrossRefPubMedGoogle Scholar
  41. 41.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lepleux C, Uroz S, Collignon C, Churin JL, Turpault MP, Frey-Klett P (2013) A short-term mineral amendment impacts the mineral weathering bacterial communities in an acidic forest soil. Res Microbiol 164(7):729–739CrossRefPubMedGoogle Scholar
  43. 43.
    Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160(1):47–56CrossRefPubMedGoogle Scholar
  44. 44.
    Calvaruso C, Turpault MP, Leclerc E, Frey-Klett P (2007) Impact of ectomycorrhizosphere on the functional diversity of soil bacterial and fungal communities from a forest stand in relation to nutrient mobilization processes. Microb Ecol 54(3):567–577CrossRefPubMedGoogle Scholar
  45. 45.
    Uroz S, Calvaruso C, Turpault MP, Sarniguet A, De Boer W, Leveau JHJ, Frey-Klett P (2009) Efficient mineral weathering is a distinctive functional trait of the bacterial genus Collimonas. Soil Biol Biochem 41(10):2178–2186CrossRefGoogle Scholar
  46. 46.
    Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148(1):257–266CrossRefPubMedGoogle Scholar
  47. 47.
    Droege M, Hill B (2008) The Genome Sequencer FLX™ System—longer reads, more applications, straight forward bioinformatics and more complete data sets. J Biotechnol 136(1):3–10CrossRefPubMedGoogle Scholar
  48. 48.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, VanHorn DM, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Oksanen J (2005) Vegan: community ecology package. 〈http://cc.oulu.fi/~jarioksa/
  50. 50.
    Lepleux C, Turpault MP, Oger P, Frey-Klett P, Uroz S (2012) Correlation of the abundance of betaproteobacteria on mineral surfaces with mineral weathering in forest soils. Appl Environ Microbiol 78(19):7114–7119CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Mauck BS, Roberts JA (2007) Mineralogic control on abundance and diversity of surface-adherent microbial communities. Geomicrobiol J 24(3–4):167–177CrossRefGoogle Scholar
  52. 52.
    Toner BM, Lesniewski RA, Marlow JJ, Briscoe LJ, Santelli CM, Bach W, Orcutt BN, Edwards KJ (2013) Mineralogy drives bacterial biogeography of hydrothermally inactive seafloor sulfide deposits. Geomicrobiol J 30(4):313–326CrossRefGoogle Scholar
  53. 53.
    Uroz S, Turpault MP, Delaruelle C, Mareschal L, Pierrat JC, Frey-Klett P (2012) Minerals affect the specific diversity of forest soil bacterial communities. Geomicrobiol J 29(1):88–98CrossRefGoogle Scholar
  54. 54.
    Bennett PC, Rogers JR, Choi WJ, Hiebert FK (2001) Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18(1):3–19CrossRefGoogle Scholar
  55. 55.
    Borrok DM, Fein JB (2005) The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electrostatic, diffuse, and triple-layer models. J Colloid Interface Sci 286(1):110–126CrossRefPubMedGoogle Scholar
  56. 56.
    Scholl MA, Mills AL, Herman JS, Hornberger GM (1990) The influence of mineralogy and solution chemistry on the attachment of bacteria to representative aquifer materials. J Contam Hydrol 6(4):321–336CrossRefGoogle Scholar
  57. 57.
    Yee N, Fein JB, Daughney CJ (2000) Experimental study of the pH, ionic strength, and reversibility behavior of bacteria–mineral adsorption. Geochim Cosmochim Acta 64(4):609–617CrossRefGoogle Scholar
  58. 58.
    Santillan EU, Kirk MF, Altman SJ, Bennett PC (2013) Mineral influence on microbial survival during carbon sequestration. Geomicrobiol J 30:578–592CrossRefGoogle Scholar
  59. 59.
    Uroz S, Turpault MP, Van Scholl L, Palin B, Frey-Klett P (2011) Long term impact of mineral amendment on the distribution of the mineral weathering associated bacterial communities from the beech Scleroderma citrinum ectomycorrhizosphere. Soil Biol Biochem 43(11):2275–2282CrossRefGoogle Scholar
  60. 60.
    Uroz S, Tech JJ, Sawaya NA, Frey-Klett P, Leveau JHJ (2014) Structure and function of bacterial communities in ageing soils: insights from the Mendocino ecological staircase. Soil Biol Biochem 69:265–274CrossRefGoogle Scholar
  61. 61.
    Calvaruso C, Turpault MP, Leclerc E, Ranger J, Garbaye J, Uroz S, Frey-Klett P (2010) Influence of forest trees on the distribution of mineral weathering-associated bacterial communities of the Scleroderma citrinum mycorrhizosphere. Appl Environ Microbiol 76(14):4780–4787CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotechnol 7(3):196–208CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Akers HA, Magee KP (1985) The repression of siderophore synthesis by Mt St Helens’ ash and silicate rock standards. Cell Mol Life Sci 41(10):1354–1355CrossRefGoogle Scholar
  64. 64.
    Carpenter C, Payne SM (2014) Regulation of iron transport systems in Enterobacteriaceae in response to oxygen and iron availability. J Inorg Biochem 133:110–117CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Page WJ, Huyer M (1984) Derepression of the Azotobacter vinelandii siderophore system, using iron-containing minerals to limit iron repletion. J Bacteriol 158(2):496–502PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • L. C. Kelly
    • 1
    • 2
    • 4
  • Y. Colin
    • 1
    • 2
    • 3
  • M-P. Turpault
    • 3
  • S. Uroz
    • 1
    • 2
    • 3
  1. 1.INRA, UMR1136 “Interactions Arbres-Microorganismes”, Centre INRA de NancyChampenouxFrance
  2. 2.Université de Lorraine, UMR1136 “Interactions Arbres-Microorganismes”Vandoeuvre-lès-NancyFrance
  3. 3.INRA UR1138 “Biogéochimie des Ecosystèmes Forestiers”, Centre INRA de NancyChampenouxFrance
  4. 4.School of Science and the Environment, Division of Biology and Conservation EcologyManchester Metropolitan UniversityManchesterUK

Personalised recommendations