Microbial Ecology

, Volume 76, Issue 1, pp 64–80 | Cite as

Melding the Old with the New: Trends in Methods Used to Identify, Monitor, and Control Microorganisms on Cultural Heritage Materials

  • Patricia Sanmartín
  • Alice DeAraujo
  • Archana VasanthakumarEmail author
Environmental Microbiology


Microbial activity has an important impact on the maintenance of cultural heritage materials, owing to the key role of microorganisms in many deterioration processes. In order to minimize such deleterious effects, there is a need to fine-tune methods that detect and characterize microorganisms. Trends in microbiology indicate that this need can be met by incorporating modern techniques. All of the methods considered in this review paper are employed in the identification, surveillance, and control of microorganisms, and they have two points in common: They are currently used in microbial ecology (only literature from 2009 to 2015 is included), and they are often applied in the cultural heritage sector. More than 75 peer-reviewed journal articles addressing three different approaches were considered: molecular, sensory and morphological, and biocontrol methods. The goal of this review is to highlight the usefulness of the traditional as well as the modern methods. The general theme in the literature cited suggests using an integrated approach.


Microorganisms Biofilms Biodeterioration Destructive and non-destructive techniques Microbial growth and survival DNA RNA Fungi 



Patricia Sanmartín, Alice DeAraujo, and Archana Vasanthakumar are deeply indebted to Professor Ralph Mitchell for his invaluable guidance and support. Patricia Sanmartín is financially supported by a postdoctoral contract within the framework of the 2011–2015 Galician Plan for Research, Innovation and Growth (Plan I2C) for 2012.


  1. 1.
    Ciferri O (2002) The role of microorganisms in the degradation of cultural heritage. Rev Conserv 3:35–45Google Scholar
  2. 2.
    Allsopp D (2011) Worldwide wastage: the economics of biodeterioration. Microbiol Tod 38:150–153Google Scholar
  3. 3.
    Koestler RJ, Koestler VH, Charola AE, Nieto Fernandez FE (2003) Art, biology and conservation: biodeterioration of works of art. The Metropolitan Museum of Art, New YorkGoogle Scholar
  4. 4.
    Coutinho ML, Miller AZ, Gutierrez-Patricio S, Hernandez-Marine M, Gomez-Bolea A, Rogerio-Candelera MA, Philips AJL, Jurado V, Saiz-Jimenez C, Macedo MF (2013) Microbial communities on deteriorated artistic tiles from Pena National Palace (Sintra, Portugal). Int Biodeter Biodegr 84:322–332CrossRefGoogle Scholar
  5. 5.
    Pinzari F (2011) Microbial ecology of indoor environments. The ecological and applied aspects of microbial contamination in archives, libraries and conservation environments (Chapter 9). In: Abdul-Wahab Al-Sulaiman SA (ed) Sick building syndrome in public buildings and workplaces. Elsevier, BurlingtonGoogle Scholar
  6. 6.
    Pinzari F, Cialei V, Barbabietola N (2010) Measurement of the microaeroflora deteriorating potentialities in the indoor environments. Preserv Sci 7:29–34Google Scholar
  7. 7.
    Konkol NR, McNamara CJ, Hellman E, Mitchell R (2012) Early detection of fungal biomass on library materials. J Cult Herit 13(2):115–119CrossRefGoogle Scholar
  8. 8.
    Vivar I, Borrego S, Ellis G, Moreno DA, García AM (2013) Fungal biodeterioration of color cinematographic films of the cultural heritage of Cuba. Int Biodeter Biodegr 84:372–382CrossRefGoogle Scholar
  9. 9.
    Kurouski D, Zaleski S, Casadio F, Van Duyne RP, Shah NC (2014) Tip-enhanced Raman spectroscopy (TERS) for in situ identification of indigo and iron gall ink on paper. J Am Chem Soc 136(24):8677–8684CrossRefPubMedGoogle Scholar
  10. 10.
    Cámara B, De los Rios A, Urizal M, AlvarezdeBuergo M, Varas MJ, Fort R, Ascaso C (2011) Characterizing the microbial colonization of a Dolostone Quarry: implications for stone biodeterioration and response to biocide treatments. Microb Ecol 62:299–313CrossRefPubMedGoogle Scholar
  11. 11.
    Prieto B, Ferrer P, Sanmartín P, Cárdenes V, Silva B (2011) Color characterization of roofing slates from the Iberian Peninsula for restoration purposes. J Cult Herit 12(4):420–430CrossRefGoogle Scholar
  12. 12.
    Sterflinger K (2010) Fungi: their role in deterioration of cultural heritage. Fungal Biol Rev 24:47–55CrossRefGoogle Scholar
  13. 13.
    Otlewska A, Adamiak J, Gutarowska B (2014) Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects. Acta Biochim Pol 61(2):217–225PubMedGoogle Scholar
  14. 14.
    Principi P, Villa F, Sorlini C, Cappitelli F (2011) Molecular studies of microbial community structure on stained pages of Leonardo da Vinci's Atlantic Codex. Microb Ecol 61(1):214–222CrossRefPubMedGoogle Scholar
  15. 15.
    Lupan I, Ianc MB, Kelemen BS, Carpa R, Rosca-Casian O, Chiriac MT, Popescu O (2014) New and old microbial communities colonizing a seventeenth-century wooden church. Folia Microbiol (Praha) 59(1):45–51CrossRefGoogle Scholar
  16. 16.
    Ortiz R, Párraga M, Navarrete J, Carrasco I, de la Vega E, Ortiz M, Herrera P, Jurgens JA, Held BW, Blanchette RA (2014) Investigations of biodeterioration by fungi in historic wooden churches of Chiloé, Chile. Microb Ecol 67(3):568–575CrossRefPubMedGoogle Scholar
  17. 17.
    Rajkowska K, Otlewska A, Koziróg A, Piotrowska M, Nowicka-Krawczyk P, Hachułka M, Wolski GJ, Kunicka-Styczyńska A, Gutarowska B, Żydzik-Białek A (2014) Assessment of biological colonization of historic buildings in the former Auschwitz II-Birkenau concentration camp. Ann Microbiol 64(2):799–808CrossRefPubMedGoogle Scholar
  18. 18.
    Palla F, Mancuso FP, Billeci N (2013) Multiple approaches to identify bacteria in archaeological waterlogged wood. J Cult Herit 14(Suppl 3):e61–e64CrossRefGoogle Scholar
  19. 19.
    Kusumi A, Li X, Osuga Y, Kawashima A, Gu J-D, Nasu M, Katayama Y (2013) Bacterial communities in pigmented biofilms formed on the sandstone bas-relief walls of the Bayon Temple, Angkor Thom, Cambodia. Microbes Environ 28(4):422–431CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Polo A, Gulotta D, Santo N, Di Benedetto C, Fascio U, Toniolo L, Villa F, Cappitelli F (2012) Importance of subaerial biofilms and airborne microflora in the deterioration of stonework: a molecular study. Biofouling 28(10):1093–1106CrossRefPubMedGoogle Scholar
  21. 21.
    Hu H, Ding S, Katayama Y, Kusumi A, Li SX, de Vries RP, Wang J, X-Z Y, Gu J-D (2013) Occurrence of Aspergillus allahabadii on sandstone at Bayon temple, Angkor Thom, Cambodia. Int Biodeter Biodegr 76:112–117CrossRefGoogle Scholar
  22. 22.
    Cennamo P, Caputo P, Giorgio A, Moretti A, Pasquino N (2013) Biofilms on tuff stones at historical sites: identification and removal by nonthermal effects of radiofrequencies. Microb Ecol 66:659–668CrossRefPubMedGoogle Scholar
  23. 23.
    Pepe O, Sannino L, Palomba S, Anastasio M, Blaiotta G, Villani F, Moschetti G (2010) Heterotrophic microorganisms in deteriorated medieval wall paintings in southern Italian churches. Microbiol Res 165:21–32CrossRefPubMedGoogle Scholar
  24. 24.
    Ma Y, Zhang H, Du Y, Tian T, Xiang T, Liu X, Feng H (2015) The community distribution of bacteria and fungi on ancient wall paintings of the Mogao Grottoes. Sci Rep 5:7752CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Vasanthakumar A, DeAraujo A, Mazurek J, Schilling M, Mitchell R (2013) Microbiological survey for analysis of the brown spots on the walls of the tomb of King Tutankhamun. Int Biodeter Biodegr 79:56–63CrossRefGoogle Scholar
  26. 26.
    Diaz-Herraiz M, Jurado V, Cuezva S, Laiz L, Pallecchi P, Tiano P, Saiz-Jimenez C (2014) Deterioration of an Etruscan tomb by bacteria from the order Rhizobiales. Sci Rep 4:3610CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Cappitelli F, Abbruscato P, Foladori P, Zanardini E, Ranalli G, Principi P, Villa F, Polo A, Sorlini C (2009) Detection and elimination of cyanobacteria from frescoes: the case of the St. Brizio Chapel (Orvieto Cathedral, Italy). Microb Ecol 57(4):633–639CrossRefPubMedGoogle Scholar
  28. 28.
    Cappitelli F, Pasquariello G, Tarsitani G, Sorlini C (2010) Scripta manent? Assessing microbial risk to paper heritage. Trends Microbiol 18(12):538–542CrossRefPubMedGoogle Scholar
  29. 29.
    Bergadi FE, Laachari F, Elabed S, Mohammed IH, Ibnsouda SK (2014) Cellulolytic potential and filter paper activity of fungi isolated from ancients manuscripts from the Medina of Fez. Ann Microbiol 64(2):815–822CrossRefGoogle Scholar
  30. 30.
    Michaelsen A, Piñar G, Montanari M, Pinzari F (2009) Biodeterioration and restoration of a 16th-century book using a combination of conventional and molecular techniques: a case study. Int Biodeter Biodegr 63(2):161–168CrossRefGoogle Scholar
  31. 31.
    Michaelsen A, Piñar G, Pinzari F (2010) Molecular and microscopical investigation of the microflora inhabiting a deteriorated Italian manuscript dated from the thirteenth Century. Microb Ecol 60(1):69–80CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Piñar G, Sterflinger K, Ettenauer J, Quandt A, Pinzari F (2015) A combined approach to assess the microbial contamination of the Archimedes Palimpsest. Microb Ecol 69(1):118–134CrossRefPubMedGoogle Scholar
  33. 33.
    Piñar G, Sterflinger K, Pinzari F (2015) Unmasking the measles-like parchment discoloration: molecular and microanalytical approach. Environ Microbiol 17(2):427–443CrossRefPubMedGoogle Scholar
  34. 34.
    Montanari M, Melloni V, Pinzari F, Innocenti G (2012) Fungal biodeterioration of historical library materials stored in Compactus movable shelves. Int Biodeterior Biodegrad 75:83–88CrossRefGoogle Scholar
  35. 35.
    Ettenauer J, Piñar G, Tafer H, Sterflinger K (2014) Quantification of fungal abundance on cultural heritage using real time PCR targeting the β-actin gene. Front Microbiol 5:262CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Michaelsen A, Pinzari F, Barbabietola N, Piñar G (2013) Monitoring of the effects of different conservation treatments on paper infecting fungi. Int Biodeterior Biodegrad 84:333–341CrossRefGoogle Scholar
  37. 37.
    Villa F, Vasanthakumar A, Mitchell R, Cappitelli F (2015) RNA-based molecular survey of biodiversity of limestone tombstone microbiota in response to atmospheric sulphur pollution. Lett Appl Microbiol 60(1):92–102CrossRefPubMedGoogle Scholar
  38. 38.
    Krakova L, Chovanova K, Pusˇkarova A, Bucˇkova M, Pangallo D (2012) A novel PCR-based approach for the detection and classification of potential cellulolytic fungal strains isolated from museum items and surrounding indoor environment. Lett Appl Microbiol 54(5):433–440CrossRefPubMedGoogle Scholar
  39. 39.
    Krakova L, De Leo F, Bruno L, Pangallo D, Urzì C (2015) Complex bacterial diversity in the white biofilms of St. Callistus Catacombs in Rome evidenced by different investigation strategies. Environ Microbiol (Accepted Article, doi:  10.1111/1462-2920.12626)
  40. 40.
    Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Br J Exp Pathol 10:226–236PubMedCentralGoogle Scholar
  41. 41.
    Pierson LS III, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Kirby DP, Buckley M, Promise E, Trauger SA, Holdcraft TR (2013) Identification of collagen-based materials in cultural heritage. Analyst 138(17):4849–4858CrossRefPubMedGoogle Scholar
  43. 43.
    Corsaro C, Mallamace D, Lojewska J, Mallamace F, Pietronero L, Missori M (2013) Molecular degradation of ancient documents revealed by 1H HR-MAS NMR spectroscopy. Sci Rep 3:2896CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Santos A, Cerrada A, García S, San Andrés M, Abrusci C, Marquina D (2009) Application of molecular techniques to the elucidation of the microbial community structure of antique paintings. Microb Ecol 58(4):692–702CrossRefPubMedGoogle Scholar
  45. 45.
    De los Ríos A, Cámara B, García Del Cura MA, Rico VJ, Galván V, Ascaso C (2009) Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia, Spain. Sci Total Environ 407(3):1123–1134CrossRefPubMedGoogle Scholar
  46. 46.
    Urzì C, De Leo F, Bruno L, Albertano P (2010) Microbial diversity in paleolithic caves: a study case on the phototrophic biofilms of the Cave of Bats (Zuheros, Spain). Microb Ecol 60(1):116–129CrossRefPubMedGoogle Scholar
  47. 47.
    Joseph E, Simon A, Prati S, Wörle M, Job D, Mazzeo R (2011) Development of an analytical procedure for evaluation of the protective behaviour of innovative fungal patinas on archaeological and artistic metal artefacts. Anal Bioanal Chem 399(9):2899–2907CrossRefPubMedGoogle Scholar
  48. 48.
    Giacomucci L, Bertoncello R, Salvadori O, Martini I, Favaro M, Villa F, Sorlini C, Cappitelli F (2011) Microbial deterioration of artistic tiles from the façade of the Grande Albergo Ausonia & Hungaria (Venice, Italy). Microb Ecol 62(2):287–298CrossRefPubMedGoogle Scholar
  49. 49.
    Scrano L, Boccone LF, Bufo SA, Carrieri R, Lahoz E, Crescenzi A (2012) Morphological and molecular characterisation of fungal populations possibly involved in the biological alteration of stones in historical buildings. Commun Agric Appl Biol Sci 77(3):187–195PubMedGoogle Scholar
  50. 50.
    Singh AP (2012) A review of microbial decay types found in wooden objects of cultural heritage recovered from buried and waterlogged environments. J Cult Herit 13(3 suppl):S16–S20CrossRefGoogle Scholar
  51. 51.
    Rosado T, Gil M, Caldeira AT, Martins MR, Barrocas Dias C, Carvalho L, Mirão J, Estêvão Candeias A (2014) Material characterization and biodegradation assessment of mural Paintings – The Renaissance Frescoes from Santo Aleixo Church, Southern Portugal. Int J Archit Herit 8(6):835–852CrossRefGoogle Scholar
  52. 52.
    Rakotonirainy MS, Dubar P (2013) Application of bioluminescence ATP measurement for evaluation of fungal viability of foxing spots on old documents. Luminescence 28:308–312CrossRefPubMedGoogle Scholar
  53. 53.
    De Leo F, Iero A, Zammit G, Urzì C (2012) Chemoorganotrophic bacteria isolated from biodeteriorated surfaces in cave and catacombs. Int J Speleol 41:125–136CrossRefGoogle Scholar
  54. 54.
    Hsieh P, Pedersen JZ, Albertano P (2013) Generation of reactive oxygen species upon red light exposure of cyanobacteria from Roman hypogea. Int Biodeter Biodegr 84:258–265CrossRefGoogle Scholar
  55. 55.
    Hsieh P, Pedersen JZ, Bruno L (2014) Photoinhibition of cyanobacteria and its application in cultural heritage conservation. Photochem Photobiol 90:533–543CrossRefPubMedGoogle Scholar
  56. 56.
    Troiano F, Polo A, Villa F, Cappitelli F (2014) Assessing the microbiological risk to stored sixteenth century parchment manuscripts: a holistic approach based on molecular and environmental studies. Biofouling 30(3):299–311CrossRefPubMedGoogle Scholar
  57. 57.
    Konkol NR, McNamara CJ, Mitchell R (2010) Fluorometric detection and estimation of fungal biomass on cultural heritage materials. J Microbiol Meth 80(2):178–182CrossRefGoogle Scholar
  58. 58.
    Konkol NR, Vasanthakumar A, DeAraujo A, Mitchell R (2013) A non-fluidic, fluorometric assay for the detection of fungi on cultural heritage materials. Ann Microbiol 63(3):965–970CrossRefGoogle Scholar
  59. 59.
    Sanmartín P, Chorro E, Vázquez-Nion D, Martínez-Verdú FM, Prieto B (2014) Conversion of a digital camera into a non-contact colorimeter for use in stone cultural heritage: the application case to Spanish granites. Measurement 56:194–202CrossRefGoogle Scholar
  60. 60.
    Rogerio-Candelera MA, Jurado V, Laiz L, Saiz-Jimenez C (2011) Laboratory and in situ assays of digital image analysis based protocols for biodeteriorated rock and mural paintings recording. J Archaeol Sci 38:2571–2578CrossRefGoogle Scholar
  61. 61.
    CIE Publication 15-2 (1986) Colorimetry. CIE Central Bureau, ViennaGoogle Scholar
  62. 62.
    Miller AZ, Rogerio-Candelera MA, Dionísio A, Macedo MF, Saiz-Jimenez C (2013) Microalgae as biodeteriogens of stone cultural heritage: qualitative and quantitative research by non-contact techniques (Book Chapter). Microalgae: Biotechnology, Microbiology and Energy, 345-358Google Scholar
  63. 63.
    Gazzano C, Favero-Longo SE, Matteucci E, Piervittori R (2009) Image analysis for measuring lichen colonization on and within stonework. Lichenologist 41(3):299–313CrossRefGoogle Scholar
  64. 64.
    CATS— Cyanobacteria attack rocks, contract EVK4-CT2000-00028; by the Italian Ministry of University and Research, project PRIN 2001, 2003; and by the Italian Ministry of Foreign Affairs (Direzione Generale per la Promozione e Cooperazione Culturale)Google Scholar
  65. 65.
    Polo A, Cappitelli F, Brusetti L, Principi P, Villa F, Giacomucci L, Ranalli G, Sorlini C (2010) Feasibility of removing surface deposits on stone using biological and chemical remediation methods. Environ Microbiol 60:1–14Google Scholar
  66. 66.
    Bosch-Roig P, Ranalli G (2014) The safety of biocleaning technologies for cultural heritage. Front Microbiol 5(155):1–3Google Scholar
  67. 67.
    Bosch-Roig P, Montes-Estellés RM, Regidor-Ros JL, Roig-Picazo P, Ranalli G (2012) New frontiers in the microbial bio-cleaning of artworks. Picturer Restorer 41:37–41Google Scholar
  68. 68.
    May E, Webster AM, Inkpen R, Zamarreño D, Kuever J, Rudolph C, Warscheid T, Sorlini C, Cappitelli F, Zanardini E, Ranalli G, Krage L, Vgenopoulos A, Katsinis D, Mello E, Malagodi M (2008) The BIOBRUSH project for bioremediation of Heritage stone, in Heritage Microbiology and Science. In: May E, Jones M, Mitchell J (eds) Microbes, monuments and maritime materials. RSC Publishing, Cambridge, pp 76–93Google Scholar
  69. 69.
    Sanmartín P, DeAraujo A, Vasanthakumar A, Mitchell R (2015) Feasibility study involving the search for natural strains of microorganisms capable of degrading graffiti from heritage materials. Int Biodeterior Biodegrad 103:186–190CrossRefGoogle Scholar
  70. 70.
    Valentini F, Diamanti A, Palleschi G (2010) New bio-cleaning strategies on porous building materials affected by biodeterioration event. Appl Surf Sci 256:6550–6563CrossRefGoogle Scholar
  71. 71.
    Alfano G, Lustrato G, Belli C, Zanardini E, Cappitelli F, Mello E, Sorlini C, Ranalli G (2011) The bioremoval of nitrate and sulfate alterations on artistic stonework: The case-study of Matera Cathedral after six years from the treatment. Int Biodeterior Biodegrad 65(7):1004–1011CrossRefGoogle Scholar
  72. 72.
    Bosch-Roig P, Regidor-Ros JL, Soriano-Sancho P, Domenech-Carbo MT, Montes-Estelles RM (2010) Ensayos de biolimpieza con bacterias en pinturas murales. Arche 4-5:115–124, In Spanish Google Scholar
  73. 73.
    Gioventu E, Lorenzi P, Villa F, Sorlini C, Rizzi M, Cagnini A, Griffo A, Cappitelli F (2011) Comparing the bioremoval of black crusts on clorored artistic lithotypes of the Cathedral of Florence with chemical and laser treatment. Int Biodeterior Biodegrad 65:832–839CrossRefGoogle Scholar
  74. 74.
    Lustrato G, Alfano G, Andreotti A, Colombini MP, Ranalli G (2012) Fast biocleaning of mediaeval frescoes using viable bacterial cells. Int Biodeterior Biodegrad 69:51–61CrossRefGoogle Scholar
  75. 75.
    Troiano F, Gulotta D, Balloi A, Polo A, Toniolo L, Lombardi E, Daffonchio D, Sorlini C, Cappitelli F (2013) Successful combination of chemical and biological treatments for the cleaning of stone artworks. Int Biodeter Biodegr 85:294–304CrossRefGoogle Scholar
  76. 76.
    Mazzoni M, Alisi C, Tasso F, Cecchini A, Marconi P, Sprocati AR (2014) Laponite micro-packs for the selective cleaning of multiple coherent deposits on wall paintings: The case study of Casina Farnese on the Palatine Hill (Rome-Italy). Int Biodeterior Biodegrad 94:1–11CrossRefGoogle Scholar
  77. 77.
    Scheerer S, Ortega-Morales O, Gaylarde C (2009) Microbial-deterioration of stone monuments—an updated overview. Adv Appl Microbiol 66:97–139CrossRefPubMedGoogle Scholar
  78. 78.
    Villa F, Cappitelli F (2013) Plant-derived bioactive compounds at sub-lethal concentrations: towards smart biocide-free antibiofilm strategies. Phytochem Rev 12(1):245–254CrossRefGoogle Scholar
  79. 79.
    Borrego S, Valdés O, Vivar I, Lavin P, Guiamet P, Battistoni P, Gómez de Saravia S Borges P (2012) Essential oils of plants as biocides against microorganisms isolated from Cuban and Argentine Documentary Heritage. ISRN Microbiol 1-7Google Scholar
  80. 80.
    Sasso S, Scrano L, Ventrella E, Bonomo MG, Crescenzi A, Salzano G, Bufo SA (2013) Natural biocides to prevent the microbial growth on cultural heritage. In: Boriani M, Gabaglio R, Gulotta D (eds) Proceedings of the Conference Built Heritage 2013-Monitoring Conservation and Management. Politecnico di Milano, Milan, pp 1035–1042Google Scholar
  81. 81.
    Stupar M, Grbić ML, Džamić A, Unković N, Ristić M, Jelikić A, Vukojević J (2014) Antifungal activity of selected essential oils and biocide benzalkonium chloride against the fungi isolated from cultural heritage objects. South African J Botany 93:118–124CrossRefGoogle Scholar
  82. 82.
    Gazzano C, Favero-Longo SE, Iacomussi P, Piervittori R (2013) Biocidal effect of lichen secondary metabolites against rock-dwelling microcolonial fungi, cyanobacteria and green algae. Int Biodeterior Biodegrad 84:300–306CrossRefGoogle Scholar
  83. 83.
    Troiano F, Vicini S, Gioventù E, Lorenzi PF, Improta CM, Cappitelli F (2014) A methodology to select bacteria able to remove synthetic polymers. Polym Dedrad Stabil 107:321–327CrossRefGoogle Scholar
  84. 84.
    Cleeland LM, Reichard MV, Tito RY, Reinhard KJ, Lewis CM Jr (2013) Clarifying prehistoric parasitism from a complementary morphological and molecular approach. J Archaeol Sci 40:3060–3066CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Herrera LK, Videla HA (2009) Surface analysis and materials characterization for the study of biodeterioration and weathering effects on cultural property. Int Biodeter Biodegr 63(7):813–822CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Patricia Sanmartín
    • 1
    • 2
  • Alice DeAraujo
    • 1
  • Archana Vasanthakumar
    • 1
    Email author
  1. 1.Laboratory of Applied Microbiology, School of Engineering and Applied SciencesHarvard UniversityCambridgeUSA
  2. 2.Departamento de Edafología y Química Agrícola, Facultad de FarmaciaUniversidad de Santiago de CompostelaSantiago de CompostelaSpain

Personalised recommendations