Deterministic assembly processes govern bacterial community structure in the Fynbos, South Africa


The Mediterranean Fynbos vegetation of South Africa is well known for its high levels of diversity, endemism, and the existence of very distinct plant communities on different soil types. Studies have documented the broad taxonomic classification and diversity patterns of soil microbial diversity, but none has focused on the community assembly processes. We hypothesised that bacterial phylogenetic community structure in the Fynbos is highly governed by deterministic processes. We sampled soils in four Fynbos vegetation types and examined bacterial communities using Illumina HiSeq platform with the 16S rRNA gene marker. UniFrac analysis showed that the community clustered strongly by vegetation type, suggesting a history of evolutionary specialisation in relation to habitats or plant communities. The standardised beta mean nearest taxon distance (ses. β NTD) index showed no association with vegetation type. However, the overall phylogenetic signal indicates that distantly related OTUs do tend to co-occur. Both NTI (nearest taxon index) and ses. β NTD deviated significantly from null models, indicating that deterministic processes were important in the assembly of bacterial communities. Furthermore, ses. β NTD was significantly higher than that of null expectations, indicating that co-occurrence of related bacterial lineages (over-dispersion in phylogenetic beta diversity) is determined by the differences in environmental conditions among the sites, even though the co-occurrence pattern did not correlate with any measured environmental parameter, except for a weak correlation with soil texture. We suggest that in the Fynbos, there are frequent shifts of niches by bacterial lineages, which then become constrained and evolutionary conserved in their new environments. Overall, this study sheds light on the relative roles of both deterministic and neutral processes in governing bacterial communities in the Fynbos. It seems that deterministic processes play a major role in assembling the bacterial community, with neutral processes playing a more minor role.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Dunbar J, Barns SM, Ticknor LO, Kuske CR (2002) Empirical and theoretical bacterial diversity in four Arizona soils. Appl Environ Microbiol 68:3035–3045

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Torsvik V, Ovreas L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Torsvik V, Ovreas L, Thingstad TF (2002) Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296:1064–1066

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Bryant JA, Lamanna C, Morlon H, Kerkhoff AJ, Enquist BJ, Green JL (2008) Microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc Natl Acad Sci U S A 105:11505–11511

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, Staley JT (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506

    CAS  PubMed  Google Scholar 

  9. 9.

    Mcarthur JV, Kovacic DA, Smith MH (1988) Genetic diversity in natural-populations of a soil bacterium across a landscape gradient. Proc Natl Acad Sci U S A 85:9621–9624

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Ettema CH, Wardle DA (2002) Spatial soil ecology. Trends Ecol Evol 17:177–183

    Article  Google Scholar 

  11. 11.

    Ramette A, Tiedje JM (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc Natl Acad Sci U S A 104:2761–2766

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Chau JF, Bagtzoglou AC, Willig MR (2011) The effect of soil texture on richness and diversity of bacterial communities. Environ Forensic 12:333–341

    CAS  Article  Google Scholar 

  13. 13.

    Cottenie K (2005) Integrating environmental and spatial processes in ecological community dynamics. Ecol Lett 8:1175–1182

    Article  PubMed  Google Scholar 

  14. 14.

    Yergeau E, Bezemer TM, Hedlund K, Mortimer SR, Kowalchuk GA, van der Putten WH (2010) Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils. Environ Microbiol 12:2096–2106

    CAS  PubMed  Google Scholar 

  15. 15.

    Martiny JBH, Eisen JA, Penn K, Allison SD, Horner-Devine MC (2011) Drivers of bacterial beta-diversity depend on spatial scale. Proc Natl Acad Sci U S A 108:7850–7854

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206

    Article  PubMed  Google Scholar 

  17. 17.

    Langenheder S, Szekely AJ (2011) Species sorting and neutral processes are both important during the initial assembly of bacterial communities. ISME J 5:1086–1094

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Besemer K, Peter H, Logue JB, Langenheder S, Lindstrom ES, Tranvik LJ, Battin TJ (2012) Unraveling assembly of stream biofilm communities. ISME J 6:1459–1468

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Stegen JC, Lin XJ, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6:1653–1664

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337–345

    Article  PubMed  Google Scholar 

  21. 21.

    Caruso T, Chan YK, Lacap DC, Lau MCY, Mckay CP, Pointing SB (2011) Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale. ISME J 5:1406–1413

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Article  Google Scholar 

  23. 23.

    Morlon H, Schwilk DW, Bryant JA, Marquet PA, Rebelo AG, Tauss C, Bohannan BJM, Green JL (2011) Spatial patterns of phylogenetic diversity. Ecol Lett 14:141–149

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Zaneveld JRR, Parfrey LW, Van Treuren W, Lozupone C, Clemente JC, Knights D, Stombaugh J, Kuczynski J, Knight R (2011) Combined phylogenetic and genomic approaches for the high-throughput study of microbial habitat adaptation. Trends Microbiol 19:472–482

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Stegen JC, Lin XJ, Fredrickson JK, Chen XY, Kennedy DW, Murray CJ, Rockhold ML, Konopka A (2013) Quantifying community assembly processes and identifying features that impose them. ISME J 7:2069–2079

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Wang JJ, Shen J, Wu YC, Tu C, Soininen J, Stegen JC, He JZ, Liu XQ, Zhang L, Zhang EL (2013) Phylogenetic beta diversity in bacterial assemblages across ecosystems: deterministic versus stochastic processes. ISME J 7:1310–1321

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Wang JJ, Soininen J, He JZ, Shen J (2012) Phylogenetic clustering increases with elevation for microbes. Environ Microbiol Rep 4:217–226

    Article  PubMed  Google Scholar 

  28. 28.

    Wang JJ, Soininen J, Shen J (2013) Habitat species pools for phylogenetic structure in microbes. Environ Microbiol Rep 5:464–467

    Article  PubMed  Google Scholar 

  29. 29.

    Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Monographs in population biology 32. Princeton University Press,, Princeton, pp. 1 online resource (xiv, 375 p.) ill., map.

  30. 30.

    Chave J (2004) Neutral theory and community ecology. Ecol Lett 7:241–253

    Article  Google Scholar 

  31. 31.

    Nemergut DR, Schmidt SK, Fukami T, O'Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77:342–356

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Etienne RS, Latimer AM, Silander JA, Cowling RM (2006) Comment on “Neutral ecological theory reveals isolation and rapid speciation in a biodiversity hot spot”. Science 311:610B

    Article  Google Scholar 

  33. 33.

    Latimer AM, Silander JA, Cowling RM (2005) Neutral ecological theory reveals isolation and rapid speciation in a biodiversity hot spot. Science 309:1722–1725

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155

    Article  PubMed  Google Scholar 

  35. 35.

    Graham CH, Fine PVA (2008) Phylogenetic beta diversity: linking ecological and evolutionary processes across space in time. Ecol Lett 11:1265–1277

    Article  PubMed  Google Scholar 

  36. 36.

    Keddy PA (1992) Assembly and response rules—2 goals for predictive community ecology. J Veg Sci 3:157–164

    Article  Google Scholar 

  37. 37.

    Cody ML, Diamond JM (1975) Ecology and evolution of communities. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  38. 38.

    Wintle BA, Bekessy SA, Keith DA, van Wilgen BW, Cabeza M, Schroder B, Carvalho SB, Falcucci A, Maiorano L, Regan TJ, Rondinini C, Boitani L, Possingham HP (2011) Ecological-economic optimization of biodiversity conservation under climate change. Nat Clim Chang 1:355–359

    Article  Google Scholar 

  39. 39.

    Allsopp N (2014) Fynbos : ecology, evolution, and conservation of a megadiverse region. Oxford University Press, Oxford

    Google Scholar 

  40. 40.

    Cowling RM (1992) The ecology of fynbos : nutrients, fire and diversity. Oxford University Press, Cape Town

    Google Scholar 

  41. 41.

    Cowling RM, Pressey RL, Rouget M, Lombard AT (2003) A conservation plan for a global biodiversity hotspot—the Cape Floristic Region, South Africa. Biol Conserv 112:191–216

    Article  Google Scholar 

  42. 42.

    Mucina L, Rutherford MC (2006) The vegetation of South Africa, Lesotho and Swaziland. South African National Biodiversity Institute, Pretoria

    Google Scholar 

  43. 43.

    Keith DA, Akcakaya HR, Thuiller W, Midgley GF, Pearson RG, Phillips SJ, Regan HM, Araujo MB, Rebelo TG (2008) Predicting extinction risks under climate change: coupling stochastic population models with dynamic bioclimatic habitat models. Biol Lett 4:560–563

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Slabbert E, Jacobs SM, Jacobs K (2014) The soil bacterial communities of South African Fynbos riparian ecosystems invaded by Australian acacia species. Plos One 9(1):1–10

    Article  Google Scholar 

  45. 45.

    Slabbert E, Kongor RY, Esler KJ, Jacobs K (2010) Microbial diversity and community structure in Fynbos soil. Mol Ecol 19:1031–1041

    Article  PubMed  Google Scholar 

  46. 46.

    Stafford WHL, Baker GC, Brown SA, Burton SG, Cowan DA (2005) Bacterial diversity in the rhizosphere of Proteaceae species. Environ Microbiol 7:1755–1768

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Tripathi BM, Kim M, Tateno R, Kim W, Wang JJ, Lai-Hoe A, Ab Shukor NA, Rahim RA, Go R, Adams JM (2015) Soil pH and biome are both key determinants of soil archaeal community structure. Soil Biol Biochem 88:1–8

    CAS  Article  Google Scholar 

  48. 48.

    Blomberg SP, Garland T (2002) Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J Evol Biol 15:899–910

    Article  Google Scholar 

  49. 49.

    Stegen JC, Freestone AL, Crist TO, Anderson MJ, Chase JM, Comita LS, Cornell HV, Davies KF, Harrison SP, Hurlbert AH, Inouye BD, Kraft NJB, Myers JA, Sanders NJ, Swenson NG, Vellend M (2013) Stochastic and deterministic drivers of spatial and temporal turnover in breeding bird communities. Glob Ecol Biogeogr 22:202–212

    Article  Google Scholar 

  50. 50.

    Ofiteru ID, Lunn M, Curtis TP, Wells GF, Criddle CS, Francis CA, Sloan WT (2010) Combined niche and neutral effects in a microbial wastewater treatment community. Proc Natl Acad Sci U S A 107:15345–15350

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Hardy OJ, Couteron P, Munoz F, Ramesh BR, Pelissier R (2012) Phylogenetic turnover in tropical tree communities: impact of environmental filtering, biogeography and mesoclimatic niche conservatism. Glob Ecol Biogeogr 21:1007–1016

    Article  Google Scholar 

  52. 52.

    Manning J, Goldblatt P (2012) Plants of the Greater Cape Floristic Region. SANBI, Biodiversity for Life, Pretoria

  53. 53.

    Zhou HW, Li DF, Tam NFY, Jiang XT, Zhang H, Sheng HF, Qin J, Liu X, Zou F (2011) BIPES, a cost-effective high-throughput method for assessing microbial diversity. ISME J 5:741–749

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Micribiol 57:2259–2261

    CAS  Article  Google Scholar 

  56. 56.

    Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Price MN, Dehal PS, Arkin AP (2010) FastTree 2-approximately maximum-likelihood trees for large alignments. Plos One 5(3):1–10

    Article  Google Scholar 

  58. 58.

    Diniz JAF, Terribile LC, da Cruz MJR, Vieira LCG (2010) Hidden patterns of phylogenetic non-stationarity overwhelm comparative analyses of niche conservatism and divergence. Glob Ecol Biogeogr 19:916–926

    Article  Google Scholar 

  59. 59.

    Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Article  Google Scholar 

  60. 60.

    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  62. 62.

    Fine PVA, Kembel SW (2011) Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34:552–565

    Article  Google Scholar 

  63. 63.

    Legendre P, Lapointe FJ, Casgrain P (1994) Modeling brain evolution from behavior—a permutational regression approach. Evolution 48:1487–1499

    Article  Google Scholar 

  64. 64.

    Cavender-Bares J, Holbrook NM (2001) Hydraulic properties and freezing-induced cavitation in sympatric evergreen and deciduous oaks with, contrasting habitats. Plant Cell Environ 24:1243–1256

    Article  Google Scholar 

  65. 65.

    Pontarp M, Canback B, Tunlid A, Lundberg P (2012) Phylogenetic analysis suggests that habitat filtering is structuring marine bacterial communities across the globe. Microb Ecol 64:8–17

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Anderson LC, Wesselingh FP, Hartman JH (2010) A phylogenetic and morphologic context for the radiation of an endemic fauna in a long-lived lake: Corbulidae (Bivalvia; Myoida) in the Miocene Pebas Formation of western Amazonia. Paleobiology 36:534–554

    Article  Google Scholar 

  67. 67.

    Ackerly DD, Schwilk DW, Webb CO (2006) Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87:S50–S61

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1003

    Article  PubMed  Google Scholar 

  69. 69.

    Miles DB (1991) The comparative method in evolutionary biology—Harvey, Ph, Pagel, Md. Science 254:134–136

    CAS  Article  PubMed  Google Scholar 

  70. 70.

    Horner-Devine MC, Bohannan BJM (2006) Phylogenetic clustering and overdispersion in bacterial communities. Ecology 87:S100–S108

    Article  PubMed  Google Scholar 

  71. 71.

    Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, Go R, Rahim RA, Husni MHA, Chun J, Adams JM (2012) Tropical soil bacterial communities in Malaysia: pH dominates in the equatorial tropics too. Microb Ecol 64:474–484

    Article  PubMed  Google Scholar 

  72. 72.

    Singh D, Lee-Cruz L, Kim WS, Kerfahi D, Chun JH, Adams JM (2014) Strong elevational trends in soil bacterial community composition on Mt. Ha lla, South Korea. Soil Biol Biochem 68:140–149

    CAS  Article  Google Scholar 

  73. 73.

    Ren L, Jeppesen E, He D, Wang J, Liboriussen L, Xing P, Wu QL (2015) pH influences the importance of niche-related and neutral processes in lacustrine bacterioplankton assembly. Appl Environ Microbiol 81:3104–3114

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Lauber CL, Fierer N (2009) Using pyrosequencing to compare the phylogenetic and functional attributes of soil bacterial communities. J Nematol 41:346–347

    Google Scholar 

  75. 75.

    Slabbert E, van Heerden CJ, Jacobs K (2010) Optimisation of automated ribosomal intergenic spacer analysis for the estimation of microbial diversity in Fynbos soil. S Afr J Sci 106:52–55

    CAS  Article  Google Scholar 

  76. 76.

    Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett 12:949–960

    Article  PubMed  Google Scholar 

  77. 77.

    Nunan N, Wu K, Young IM, Crawford JW, Ritz K (2002) In situ spatial patterns of soil bacterial populations, mapped at multiple scales, in an arable soil. Microb Ecol 44:296–305

    CAS  Article  PubMed  Google Scholar 

  78. 78.

    Nunan N, Wu KJ, Young IM, Crawford JW, Ritz K (2003) Spatial distribution of bacterial communities and their relationships with the micro-architecture of soil. FEMS Microbiol Ecol 44:203–215

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Grundmann GL, Debouzie D (2000) Geostatistical analysis of the distribution of NH4+ and NO2--oxidizing bacteria and serotypes at the millimeter scale along a soil transect. FEMS Microbiol Ecol 34:57–62

    CAS  PubMed  Google Scholar 

  80. 80.

    Bent SJ, Gucker CL, Oda Y, Forney LJ (2003) Spatial distribution of Rhodopseudomonas palustris ecotypes on a local scale. Appl Environ Microbiol 69:5192–5197

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Bundt M, Widmer F, Pesaro M, Zeyer J, Blaser P (2001) Preferential flow paths: biological ‘hot spots’ in soils. Soil Biol Biochem 33:729–738

    CAS  Article  Google Scholar 

  82. 82.

    Dini-Andreote F, Stegen JC, van Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc Natl Acad Sci U S A 112:E1326–E1332

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Weiher E, Freund D, Bunton T, Stefanski A, Lee T, Bentivenga S (2011) Advances, challenges and a developing synthesis of ecological community assembly theory. Philos Trans R Soc B Biol Sci 366:2403–2413

    Article  Google Scholar 

  84. 84.

    Vreulink JM, Esterhuyse A, Jacobs K, Botha A (2007) Soil properties that impact yeast and actinomycete numbers in sandy low nutrient soils. Can J Microbiol 53:1369–1374

    CAS  Article  PubMed  Google Scholar 

  85. 85.

    De Marco A, Gentile AE, Arena C, De Santo AV (2005) Organic matter, nutrient content and biological activity in burned and unburned soils of a Mediterranean maquis area of southern Italy. Int J Wildland Fire 14:365–377

    Article  Google Scholar 

  86. 86.

    Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manag 122:51–71

    Article  Google Scholar 

  87. 87.

    Witkowski ETF, Mitchell DT (1987) Variations in soil phosphorus in the Fynbos biome, South-Africa. J Ecol 75:1159–1171

    Article  Google Scholar 

  88. 88.

    Jhonson C, ebrary Inc. (2009) Biology of soil science. Oxford Book Co.,, Jaipur, India, pp. 301 p. ill.

  89. 89.

    Bardgett RD (2005) The biology of soil: a community and ecosystem approach. Oxford University Press, New York

    Google Scholar 

  90. 90.

    Bardgett RD, Shine A (1999) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biol Biochem 31:317–321

    CAS  Article  Google Scholar 

  91. 91.

    Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems 6:503–523

    CAS  Article  Google Scholar 

  92. 92.

    Singh JS, Raghubanshi AS, Singh RS, Srivastava SC (1989) Microbial biomass acts as a source of plant nutrients in dry tropical forest and savannah. Nature 338:499–500

    Article  Google Scholar 

  93. 93.

    De Deyn GB, Van der Putten WH (2005) Linking aboveground and belowground diversity. Trends Ecol Evol 20:625–633

    Article  PubMed  Google Scholar 

  94. 94.

    Cowling RM, Proches S, Partridge TC (2009) Explaining the uniqueness of the Cape flora: incorporating geomorphic evolution as a factor for explaining its diversification. Mol Phylogenet Evol 51:64–74

    Article  PubMed  Google Scholar 

Download references


The authors would like to thank the South African National Parks (SANParks) and Cape Nature for giving us access to the study sites (permit number 0028-AAA005-00161, 25/01/2010: SBM Chimphango), as well as Dr. James C Stegen and Dr. Binu M Tribathi for providing invaluable advice with the analysis of the data. This work was supported by a grant from the National Research Foundation (NRF) funded by the Korean Government Ministry of Education, Science and Technology (MEST) (NRF2013-031400). Also, the authors would like to thank the Department of Biological Science, University of Cape Town for use of their laboratory facilities.

Author information



Corresponding author

Correspondence to Jonathan Miles Adams.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.


(DOCX 107 kb)


(DOCX 72 kb)


(DOCX 1180 kb)


(DOCX 200 kb)


(DOCX 16 kb)


(DOCX 12 kb)


(DOCX 12 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moroenyane, I., Chimphango, S.B.M., Wang, J. et al. Deterministic assembly processes govern bacterial community structure in the Fynbos, South Africa. Microb Ecol 72, 313–323 (2016).

Download citation


  • Bacteria
  • Fynbos
  • 16S rRNA gene
  • Phylogenetic diversity
  • Community assembly