A Pure Life: The Microbial Ecology of High Purity Industrial Waters

Abstract

The microbial ecology of various natural environments has been an active area of research since the earlier part of the twentieth century. Remote and sometimes extreme environments such as the deep ocean and the deep terrestrial subsurface have revealed a remarkable array of microorganisms. The majority of these environments are nutrient limited, and microorganisms—principally, bacteria—have developed a number of survival strategies that enable their survival and, in some cases, replication. While planktonic microorganisms exist in oligotrophic environments, the predominant mode of survival and growth is associated with biofilms. There are a number of similarities between the physicochemistry of industrial water systems and some natural aquatic ecosystems, and these similarities extend to the microbial populations and the survival mechanisms that are employed. The “starvation-survival” mechanisms, including biofilm formation, may be associated with deleterious effects on industrial water systems. These effects include heat transfer inhibition, microbially influenced corrosion, and contamination of various products manufactured in a wide array of industries. Biological fouling of industrial water systems has significant direct and indirect (through antimicrobial chemical applications) impacts on engineered materials and on the etiology of some waterborne diseases. This review provides an overview of the microbial ecology of purified waters and discusses the impacts of biological activity on industrial systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Morita RY (1997) Bacteria in oligotrophic environments: starvation-survival lifestyle. Chapman and Hall, London, 529 pp

    Google Scholar 

  2. 2.

    Novitsky JA, Morita RY (1978) Possible strategy for the survival of marine bacteria under starvation conditions. Mar Biol 48:289–295

    Article  Google Scholar 

  3. 3.

    Kim IS, Lee GH, Lee KJ (2000) Monitoring and characterization of bacterial contamination in a high-purity water system used for semiconductor manufacturing. J Microbiol 38:99–104

    CAS  Google Scholar 

  4. 4.

    Chicote E, Garcia AM, Moreno DA, Sarro MI, Lorenzo PI, Montero F (2005) Isolation and identification of bacteria from spent nuclear fuel pools. J Ind Microbiol Biotechnol 32:155–162

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Chicote E, Moreno DA, Garcia AM, Sarro MI, Lorenzo PI, Montero F (2004) Biofouling on the walls of a spent nuclear fuel pool with radioactive ultrapure water. Biofouling 20:35–42

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Sarro MI, Garcia AM, Moreno DA (2005) Biofilm formation in spent nuclear fuel pools and bioremediation of radioactive water. Int Microbiol 8:223–230

    PubMed  CAS  Google Scholar 

  7. 7.

    Sutton S, Jimenez L (2012) A review of reported recalls involving microbiological control 2004–2011 with emphasis on FDA considerations of objectionable organisms. Am Pharma Rev 15:42–57

    CAS  Google Scholar 

  8. 8.

    Roth E, Fabre B, Accary A, Faller B (1998) Study of fouling of reverse osmosis membranes used to produce water for hemodialysis. Revue des Sciences de l’Eau 11:409–427

    Article  CAS  Google Scholar 

  9. 9.

    Ridgway H, Ishida K, Rodriguez G, Safarik J, Knoell T, Bold R (1999) Biofouling of membranes: membrane preparation, characterization, and analysis of bacterial adhesion. Biofilms, vol. 310, pp. 463–494

  10. 10.

    Flemming HC, Griebe T, Schaule G (1996) Antifouling strategies in technical systems—a short review. Water Sci Technol 34:517–524

    Article  CAS  Google Scholar 

  11. 11.

    Amy PS, Morita RY (1983) Starvation-survival patterns of 16 freshly isolated open-ocean bacteria. Appl Environ Microbiol 45:1109–1115

    PubMed  PubMed Central  CAS  Google Scholar 

  12. 12.

    Amy PS, Pauling C, Morita RY (1983) Starvation-survival processes of a marine Vibrio. Appl Environ Microbiol 45:1041–1048

    PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Cavicchioli R, Ostrowski M, Fegatella F, Goodchild A, Guixa-Boixercu N (2002) Life under nutrient limitation in oligotrophic marine environments: an eco/physiological perspective of Sphingopyxis alaskensis (formerly Sphingomonas alaskensis). Ecology 45:203–217

    Google Scholar 

  14. 14.

    Fuhrman J (1987) Close coupling between release and uptake of dissolved free amino acids in seawater studied by an isotope dilution approach. Mar Ecol Prog Ser 37:45–52

    Article  CAS  Google Scholar 

  15. 15.

    Williams PJL (2000) Heterotrophic bacteria and the dynamics of dissolved organic matter. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Liss, New York, pp 153–200

    Google Scholar 

  16. 16.

    Barber RT (1968) Dissolved organic carbon from deep waters resists microbial oxidation. Nature 220:274–275

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Hobbie JE, Hobbie EA (2013) Microbes in nature are limited by carbon and energy: the starving-survival lifestyle in soil and consequences for estimating microbial rates. Front Microbiol 4:1–11

    Article  Google Scholar 

  18. 18.

    Crump BC, Ducklow HW, Hobbie JE (2013) Estuarine microbial food webs. In: Crump BC, Kemp WM, Yàñez-Arancibia A (eds) Day, JW. Estuarine biology, Wiley-Blackwell, pp 263–284

    Google Scholar 

  19. 19.

    Lleò MM, Bonato B, Benedetti D, Canepari P (2005) Survival of enterococcal species in aquatic environments. FEMS Microbiol Ecol 54:189–196

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    McDougald DM, Rice SA, Weichart D, Kjelleberg S (2006) Nonculturability: adaptation or debilitation. FEMS Microb Ecol 25:1–9

    Article  Google Scholar 

  21. 21.

    Hartke A, Giard J-C, Laplace J-M, Auffray Y (1998) Survival of Enterococcus faecalis in an oligotrophic microcosm: changes in morphology, development of general stress resistance, and analysis of protein synthesis. Appl Environ Microbiol 64:4238–4245

    PubMed  PubMed Central  CAS  Google Scholar 

  22. 22.

    Moyer CL, Morita RY (1989) Effect of growth-rate and starvation-survival on the viability and stability of a psychrophilic marine bacterium. Appl Environ Microbiol 55:1122–1127

    PubMed  PubMed Central  CAS  Google Scholar 

  23. 23.

    Ronimus RS, Rueckert A, Morgan HW (2006) Survival of thermophilic spore-forming bacteria in a 90+ year old milk powder from Ernest Shackelton’s Cape Royds Hut in Antarctica. J Dairy Res 73:235–243

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Horneck G, Bücker H, Reitz G (1994) Long-term survival of bacterial spores in space. Adv Space Res 14:41–45

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Cano RJ, Borucki MK (1995) Revival and identification of bacterial-spores in 25-million-year-old to 40-million-year-old Dominican amber. Science 268:1060–1064

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Aaronson S (1973) Digestion of phytoflagellates. In: Dingle, JT (ed.) Lysosomes in biology and medicine, vol. 13. North Holland Publishing, pp. 18–27

  27. 27.

    Hines ME, Visscher PT, Devereux R (1997) Sulfur cycling. In: Hurst CJ, Knudsen GR, McInerney MJ, Stetzenbach LD, Walter MV (eds) Manual of environmental microbiology. ASM, Washington, D.C., pp 324–333

    Google Scholar 

  28. 28.

    Gómez-Consarnau L, Akram N, Lindell K, Pedersen A, Neutze R, Milton DL, González JM, Pinhassi J (2010) Proteorhodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol 8:1–10

    Article  CAS  Google Scholar 

  29. 29.

    Tabor PS, Ohwada K, Colwell RR (1981) Filterable marine bacteria found in the deep sea: distribution, taxonomy, and response to starvation. Microb Ecol 7:67–83

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Moyer CL, Morita RY (1989) Effect of growth rate and starvation-survival on cellular DNA, RNA, and protein of a psychrophilic marine bacterium. Appl Environ Microbiol 55:2710–2716

    PubMed  PubMed Central  CAS  Google Scholar 

  31. 31.

    Declerck P (2010) Biofilms: the environmental playground of Legionella pneumophila. Environ Microbiol 12:557–566

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Álvarez B, López MM, Biosca EG (2008) Survival strategies and pathogenicity of Ralstonia solanacearum phylotype II subjected to prolonged starvation in environmental microcosms. Microbiology 154:3590–3598

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Xu HS, Roberts N, Singleton FL, Attwell RW (1982) Survival and viability of nonculturable Escherichia coli and Vibrio cholera in the estuarine and marine environment. Microb Ecol 8:313–323

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Hirsch PM, Bernhard YS, Cohen YS, Ensigh HW, Jannasch HW, Koch AL, Marshall KC (1978) Life under conditions of low nutrient concentrations. In: Shilo M (ed) Life under conditions of low nutrient concentrations., Group report on strategies of microbiological life in extreme environments

    Google Scholar 

  35. 35.

    Button DK (1991) Biochemical basis for whole-cell uptake kinetics: specific affinity, oligotrophic capacity, and the meaning of the Michaelis constant. Appl Environ Microbiol 57:2033–2038

    PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Cho J-C, Giovannoni SJ (2004) Cultivation and growth characteristics of a diverse group of oligotrophic marine gammaproteobacteria. Appl Environ Microbiol 70:432–440

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37.

    Fegatella F, R RC (2000) Physiological responses to starvation in the marine oligotrophic ultramicrobacterium Sphingomonas sp. strain rb2256. Appl Environ Microbiol 66: 2037–2044

  38. 38.

    Schut F, Gottschal JC, Rudolf PA (1997) Isolation and characterization of the marine ultramicrobacterium Sphingomonas sp. strain rb2256. FEMS Microbiol Rev 20:363–369

    Article  CAS  Google Scholar 

  39. 39.

    Amy PS, Durham C, Hall D, Haldeman DL (1993) Starvation-survival of deep subsurface isolates. Curr Microbiol 26:345–352

    Article  CAS  Google Scholar 

  40. 40.

    McNamara CJ, Lemke MJ, Leff LG (2003) Underestimation of bacterial numbers in starvation-survival mode using the nucleic acid stain DAPI. Archiv Fur Hydrobiologie 157:309–319

    Article  CAS  Google Scholar 

  41. 41.

    Mittelman MW (1999) Recovery and characterization of biofilm bacteria associated with medical devices. Biofilms 310:534–551

    CAS  Google Scholar 

  42. 42.

    Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Vanhaecke E, Haesevelde KVD (1991) Bacterial contamination of stainless steel equipment. In: Groves MJ, Olson WP, Anisfeld MH (eds) Sterile pharmaceutical manufacturing, vol 2, Interpharm Press. Buffalo Grove, IL, pp 141–162

    Google Scholar 

  44. 44.

    Vanhaecke E, Remon JP, Raes F, Moors J, DeRudder D, Peteghen AV (1990) Kinetics of Pseudomonas aeruginosa adhesion to 304 and 316-l stainless steel: role of cell surface hydrophobicity. Appl Environ Microbiol 56:788–795

    PubMed  PubMed Central  CAS  Google Scholar 

  45. 45.

    Pedersen K (1990) Biofilm development on stainless steel and PVC surfaces in drinking water. Wat Res 24:239–243

    Article  CAS  Google Scholar 

  46. 46.

    Quirynen M, Mei HCVD, Bollen CM, Schotte A, Marechal M, Doornbusch GI, Naert I, Busscher HJ, Steenberghe DV (1993) An in vivo study of the influence of the surface roughness of implants on the microbiology of supra- and subgingival plaque. J Dent Res 72:1304–1309

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Verheyen CC, Dhert WJ, Blieck-Hogervorst JM, Reijden TJVD, Petit PL, Groot KD (1993) Adherence to a metal, polymer and composite by Staphylococcus aureus and Staphylococcus epidermidis. Biogeosciences 14:383–391

    CAS  Google Scholar 

  48. 48.

    Arnold JW, Suzuki O (2003) Effects of corrosive treatment on stainless steel surface finishes and bacterial attachment. Trans ASAE 46:1595–1602

    Article  Google Scholar 

  49. 49.

    Riedewald F (2006) Bacterial adhesion to surfaces: the influence of surface roughness. PDA J Pharm Sci Technol 60:164–170

    PubMed  Google Scholar 

  50. 50.

    Dahlback B, Hermannsson M, Kjelleberg S, Norkrans B (1981) The hydrophobicity of bacteria—an important factor in the initial adhesion at the air-water interface. Arch Microbiol 128:267–270

    PubMed  Article  CAS  Google Scholar 

  51. 51.

    Marshall KC, Stout R, Mitchell R (1971) Mechanisms of the initial events in the sorption of marine bacteria to surfaces. J Gen Microbiol 68:337–348

    Article  CAS  Google Scholar 

  52. 52.

    Characklis WG (1990) Microbial biofouling control. In: Characklis WG, Marshall KC (eds) Biofilms. John Wiley & Sons, New York, NY, pp 585–633

    Google Scholar 

  53. 53.

    Kulakov LA, McAlister MB, Ogden KL, Larkin MJ, O’Hanlon JF (2002) Analysis of bacteria contaminating ultrapure water in industrial systems. Appl Environ Microbiol 68:1548–1555

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. 54.

    Bohus V, Keki Z, Marialigeti K, Baranyi K, Patek G, Schunk J, Toth EM (2011) Bacterial communities in an ultrapure water containing storage tank of a power plant. Acta Microbiologica Et Immunologica Hungarica 58:371–382

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Bohus V, Toth EM, Szekely AJ, Makk J, Baranyi K, Patek G, Schunk J, Marialigeti K (2010) Microbiological investigation of an industrial ultra pure supply water plant using cultivation-based and cultivation-independent methods. Water Res 44:6124–6132

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Minogue E, Reddington K, Dorai-Raj S, Tuite N, Clancy E, Barry T (2013) Diagnostics method for the rapid quantitative detection and identification of low-level contamination of high-purity water with pathogenic bacteria. J Ind Microbiol Biotechnol 40:1005–1013

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Mijnendonckx K, Provoost A, Ott CM, Venkateswaran K, Mahillon J, Leys N, Van Houdt R (2013) Characterization of the survival ability of Cupriavidus metallidurans and Ralstonia pickettii from space-related environments. Microb Ecol 65:347–360

    PubMed  Article  CAS  Google Scholar 

  58. 58.

    Al-Gabr HM, Zheng TL, Yu X (2014) Fungi contamination of drinking water. In: Whitacre DM (ed) Reviews of environmental contamination and toxicology, vol 228., pp 121–139

    Google Scholar 

  59. 59.

    Cabral D, Pinto VEF (2002) Fungal spoilage of bottled mineral water. Int J Food Microbiol 72:73–76

    PubMed  Article  Google Scholar 

  60. 60.

    Arvanitidou M, Kanellou K, Constantinides TC, Katsouyannopoulos V (1999) The occurrence of fungi in hospital and community potable waters. Lett Appl Microbiol 29:81–84

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Falcao F, Santos A, Ferreira F, Macieira F, Leitao R, Monteiro S, Santos R (2012) Fungal contamination in reverse-osmosis treated water. Mycoses 55:322–323

    Google Scholar 

  62. 62.

    Montagnac R, Schillinger F, Roquebert MF, Croix JC, Eloy C (1991) Fungal contamination of a dialysis water-supply. Nephrologie 12:27–30

    PubMed  CAS  Google Scholar 

  63. 63.

    Montagnac R, Schillinger F, Roquebert MF, Croix JC, Eloy C (1991) Fungal contamination of a water delivery system in a self-dialysis unit. Medecine Et Maladies Infectieuses 21:261–265

    Article  Google Scholar 

  64. 64.

    Novikova N, De Boever P, Poddubko S, Deshevaya E, Polikarpov N, Rakova N, Coninx I, Mergeay M (2006) Survey of environmental biocontamination on board the International Space Station. Res Microbiol 157:5–12

    PubMed  Article  Google Scholar 

  65. 65.

    Roman MC, Schijff OJVD, Macuch P, Mittelman MW (2001) Preliminary assessment of microbial adhesion on the surface of materials from the ISS internal thermal control system: results of an accelerated 60-d study. Soc Automotive Eng J 2337:1–11

    Google Scholar 

  66. 66.

    Kim IS, Kim SE, Hwang JS (1997) Nutritional flexibility of oligotrophic and copiotrophic bacteria isolated from deionized-ultrapure water made by high-purity water manufacturing system in a semiconductor manufacturing company. J Microbiol Biotechnol 7:200–203

    CAS  Google Scholar 

  67. 67.

    Carson LA, Favero MS, Bond WW, Peterson NJ (1973) Morphological, biochemical, and growth characteristics of Pseudomonas cepacia from distilled water. Appl Microbiol 25:476–483

    PubMed  PubMed Central  CAS  Google Scholar 

  68. 68.

    McFeters GA, Broadaway SC, Pyle BH, Siu KK, Egozy Y (1993) Bacterial ecology of operating laboratory water purification systems. Ultrapure Wat 10:32–37

    CAS  Google Scholar 

  69. 69.

    Martyak JE, Carmody JC, Husted GR (1993) Characterizing biofilm growth in deionized ultrapure water piping systems. Microcontamination 11:39–44

    Google Scholar 

  70. 70.

    Mittelman MW, Islander R, Platt RM (1987) Biofilm formation in a closed-loop purified water system. Med Device Diagn Ind 10(75):50–55

    Google Scholar 

  71. 71.

    Patterson MK, Husted GR, Rutkowski A, Mayett DC (1991) Bacteria: isolation, identification, and microscopic properties of biofilms in high-purity water distribution systems. Ultrapure Wat 8:18–24

    CAS  Google Scholar 

  72. 72.

    Mary P, Chihib NE, Charafeddine O, Defives C, Hornez JP (2002) Starvation survival and viable but nonculturable states in Aeromonas hydrophila. Microb Ecol 43:250–258

    PubMed  Article  CAS  Google Scholar 

  73. 73.

    Lungu B, Saldivar JC, Story R, Ricke SC, Johnson MG (2010) The combination of energy-dependent internal adaptation mechanisms and external factors enables Listeria monocytogenes to express a strong starvation survival response during multiple-nutrient starvation. Foodborne Pathogens Dis 7:499–505

    Article  CAS  Google Scholar 

  74. 74.

    Mittelman MW (1995) Biofilm development in purified water systems. In: Lappin-Scott HL, Costerton JW (eds) Microbial biofilms. Cambridge Univ. Press, London, pp 133–147

    Chapter  Google Scholar 

  75. 75.

    Jimenez L (2007) Microbial diversity in pharmaceutical product recalls and environments. PDA J Pharm Sci Technol 61:383–399

    PubMed  CAS  Google Scholar 

  76. 76.

    Weyandt RG (2001) Microbiological aspects of ultra pure water units in the pharmaceutical industry—an up-to-date literature review. Pharmazeutische Industrie 63:1295

    CAS  Google Scholar 

  77. 77.

    Kawai M, Yamagishi J, Yamaguchi N, Tani K, Nasu M (2004) Bacterial population dynamics and community structure in a pharmaceutical manufacturing water supply system determined by real-time PCR and PCR-denaturing gradient gel electrophoresis. J Appl Microbiol 97:1123–1131

    PubMed  Article  CAS  Google Scholar 

  78. 78.

    Keki Z, Grebner K, Bohus V, Marialigeti K, Toth EM (2013) Application of special oligotrophic media for cultivation of bacterial communities originated from ultrapure water. Acta Microbiologica Et Immunologica Hungarica 60:345–357

    PubMed  Article  Google Scholar 

  79. 79.

    Kressel AB, Kidd F (2001) Pseudo-outbreak of Mycobacterium chelonae and Methylobacterium mesophilicum caused by contamination of an automated endoscopy washer. Infect Control Hosp Epidemiol 22:414–418

    PubMed  Article  CAS  Google Scholar 

  80. 80.

    Howard G, Duberstein R (1986) A case of penetration of 0.2 μm-rated membrane filters by bacteria. J Parent Drug Assoc 34:95–102

    Google Scholar 

  81. 81.

    Christian DA, Meltzer TH (1986) The penetration of membranes by organism grow-through and its related problems. Ultrapure Water 3:39–44

    CAS  Google Scholar 

  82. 82.

    Mittelman MW (1998) Bacterial biofilms in pharmaceutical water systems. In: Meltzer TH, Jornitz M (eds) Filtration in the biopharmaceutical industry. Marcel Dekker, New York, pp 245–258

    Google Scholar 

  83. 83.

    Craven RA, Ackerman AJ, Tremont PL (1986) High purity water technology for silicon wafer cleaning in VLSI production. Microcontamination 4:1421–1422

    Google Scholar 

  84. 84.

    Eisenmann DE, Ebel CJ (1988) Sulfuric acid and DI point of use particle counts and resultant silicon wafer FM levels. Proceedings of the 9th annual meeting of the Institute for Environmental Sciences (ICCS), September 26–30, Los Angeles; 547–559.

  85. 85.

    DePaiva ET, DaSilva FWO, Raisin C, Lassabatere L (1992) Contribution of the contamination of deionized water by bacteria to the adsorption of carbon on Si and GASB. J Mat Sci 27:1585–1588

    Article  CAS  Google Scholar 

  86. 86.

    Mittelman MW (1991) Bacterial growth and biofouling control in purified water systems. In: Flemming HC, Geesey GG (eds) Biofouling and biocorrosion in industrial water systems. Springer-Verlag, Berlin, pp 133–154

    Chapter  Google Scholar 

  87. 87.

    Dombrowsky M, Kirschner A, Sommer R (2013) PVC-piping promotes growth of Ralstonia pickettii in dialysis water treatment facilities. Water Sci Technol 68:929–933

    PubMed  Article  CAS  Google Scholar 

  88. 88.

    Hiraishi A, Furuhata K, Matsumoto A, Koike KA, Fukuyama M, Tabuchi K (1995) Phenotypic and genetic diversity of chlorine-resistant Methylobacterium strains isolated from various environments. Appl Environ Microbiol 61:2099–2107

    PubMed  PubMed Central  CAS  Google Scholar 

  89. 89.

    Kovaleva J, Degener JE, van der Mei HC (2014) Methylobacterium and its role in health care-associated infection. J Clin Microbiol 52:1317–1321

    PubMed  PubMed Central  Article  Google Scholar 

  90. 90.

    Gomila M, Gasco J, Gil J, Bernabeu R, Inigo V, Lalucat J (2006) A molecular microbial ecology approach to studying hemodialysis water and fluid. Kidney Int 70:1567–1576

    PubMed  Article  CAS  Google Scholar 

  91. 91.

    Ledebo I (2002) On-line preparation of solutions for dialysis: practical aspects versus safety and regulations. J Am Soc Nephrol 13:S78–S83

    PubMed  CAS  Google Scholar 

  92. 92.

    Penne EL, Visser L, van den Dorpel MA, van der Weerd NC, Mazairac AHA, van Jaarsveld BC, Koopman MG, Vos P, Feith GW, Hovinga TKK, van Hamersvelt HW, Wauters IM, Bots ML, Nube MJ, ter Wee PM, Blankestijn PJ, Grooteman MPC (2009) Microbiological quality and quality control of purified water and ultrapure dialysis fluids for online hemodiafiltration in routine clinical practice. Kidney Int 76:665–672

    PubMed  Article  CAS  Google Scholar 

  93. 93.

    Gomila M, Gasco J, Busquets A, Gil J, Bernabeu R, Buades JM, Lalucat J (2005) Identification of culturable bacteria present in haemodialysis water and fluid. Fems Microbiol Ecol 52:101–114

    PubMed  Article  CAS  Google Scholar 

  94. 94.

    Brown-Elliott BA, Wallace RJ Jr, Tichindelean C, Sarria JC, McNulty S, Vasireddy R, Bridge L, Mayhall CG, Turenne C, Loeffelholz M (2011) Five-year outbreak of community- and hospital-acquired Mycobacterium porcinum infections related to public water supplies. J Clin Microbiol 49:4231–4238

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95.

    Berry D, Xi CW, Raskin L (2006) Microbial ecology of drinking water distribution systems. Curr Opin Biotechnol 17:297–302

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Miyamoto M, Yamaguchi Y, Sasatsu M (2000) Disinfectant effects of hot water, ultraviolet light, silver ions and chlorine on strains of Legionella and nontuberculous mycobacteria. Microbios 101:7–13

    PubMed  CAS  Google Scholar 

  97. 97.

    Falkinham JO (2009) Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol 107:356–367

    PubMed  Article  CAS  Google Scholar 

  98. 98.

    Roth VR, Jarvis WR (2000) Outbreaks of infection and/or pyrogenic reactions in dialysis patients. Semin Dial 13:92–96

    PubMed  Article  CAS  Google Scholar 

  99. 99.

    Mangram AJ, Archibald LK, Hupert M, Tokars JI, Silver LC, Brennan P, Arduino M, Peterson S, Parks S, Raymond A, McCullough M, Jones M, Wasserstein A, Kobrin S, Jarvis WR (1998) Outbreak of sterile peritonitis among continuous cycling peritoneal dialysis patients. Kidney Int 54:1367–1371

    PubMed  Article  CAS  Google Scholar 

  100. 100.

    Glorieux G, Hulko M, Speidel R, Brodbeck K, Krause B, Vanholder R (2014) Looking beyond endotoxin: a comparative study of pyrogen retention by ultrafilters used for the preparation of sterile dialysis fluid. Scientific Reports 4

  101. 101.

    Glorieux G, Neirynck N, Veys N, Vanholder R (2012) Dialysis water and fluid purity: more than endotoxin. Nephrol Dial Transplant 27:4010–4021

    PubMed  Article  CAS  Google Scholar 

  102. 102.

    Smeets E, Kooman J, van der Sande F, Stobberingh E, Frederik P, Claessens P, Grave W, Schot A, Leunissen K (2003) Prevention of biofilm formation in dialysis water treatment systems. Kidney Int 63:1574–1576

    PubMed  Article  Google Scholar 

  103. 103.

    Cappelli G, Sereni L, Scialoja MG, Morselli M, Perrone S, Ciuffreda A, Bellesia M, Inguaggiato P, Albertazzi A, Tetta C (2003) Effects of biofilm formation on haemodialysis monitor disinfection. Nephrol Dial Transplant 18:2105–2111

    PubMed  Article  CAS  Google Scholar 

  104. 104.

    Noel D, Lemaitre C, Pebere N, Festy D (1998) Study of bacterial corrosion in nuclear industries. In: Noel D, Lemaitre C, Pebere N, Festy D (eds) Bio-deterioration of materials. EDP Sciences, Clamart, France, pp 295–306

    Google Scholar 

  105. 105.

    SEMI International Standard (2013) SEMI F63-0213, Guide for ultrapure water used in semiconductor processing. SEMI International, San Jose, CA

    Google Scholar 

  106. 106.

    USP (2014) Usp 37, <1231> Water for pharmaceutical purposes, United States Pharmacopeial Convention/Rand McNally, Taunton, MA

    Google Scholar 

  107. 107.

    Mittelman MW, Kawamura K, Jornitz MW, Meltzer TH (2001) Filter validation: bacterial hydrophobicity, adsorptive sequestration and cell size alteration. PDA J Pharm Sci Technol 55:422–428

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This minireview is dedicated to Professor Ralph Mitchell, a mentor and friend to many colleagues.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. W. Mittelman.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mittelman, M.W., Jones, A.D.G. A Pure Life: The Microbial Ecology of High Purity Industrial Waters. Microb Ecol 76, 9–18 (2018). https://doi.org/10.1007/s00248-016-0736-6

Download citation

Keywords

  • Biofilm
  • Bacteria
  • Industrial water systems
  • Oligotrophs
  • VBNC