Advertisement

Microbial Ecology

, Volume 72, Issue 4, pp 861–869 | Cite as

Wild Birds, Frequent Carriers of Extended-Spectrum β-Lactamase (ESBL) Producing Escherichia coli of CTX-M and SHV-12 Types

  • Leticia Alcalá
  • Carla Andrea Alonso
  • Carmen Simón
  • Chabier González-Esteban
  • Jesús Orós
  • Antonio Rezusta
  • Carmelo Ortega
  • Carmen Torres
Environmental Microbiology

Abstract

To get a better insight into the role of birds as reservoirs of extended-spectrum β-lactamase (ESBL) and plasmidic AmpC β-lactamase (pAmpC) Escherichia coli producers, 100 fecal samples belonging to 15 different wild avian species from Northern Spain were analyzed. Cefotaxime-resistant (CTXR) E. coli isolates were identified in 16 of the 100 tested birds, which corresponded to 9 animal species (Gyps fulvus—griffon vulture, Larus michahellis—yellow-legged gull, Milvus migrans—black kite, Milvus milvus—red kite, Ciconia ciconia—white stork, Sturnus unicolor—spotless starling, Aquila chrysaetos—golden eagle, Cuculus canorus—common cuckoo, Tyto alba—barn owl). Fifteen isolates harbored ESBL or pAmpC-encoding genes (number of isolates): bla SHV-12 (9), bla CTX-M-1 (3), bla CTX-M-14 (2), and bla CMY-2 (1). The last CTXR isolate presented a −42-point-mutation in the chromosomal ampC promoter. Eleven out of 15 ESBL/pAmpC E. coli isolates were multiresistant (most common resistance phenotype: β-lactams-quinolones-tetracycline-sulfamethoxazole/trimethoprim). A plasmid-mediated quinolone resistance determinant (qnrS1) was identified in one E. coli from a barn owl. High genetic diversity was observed among ESBL/pAmpC E. coli isolates, with 12 different sequence types (STs), including several strains of STs frequently detected among human clinical isolates (ST38/D, ST131/B2, ST155/B1, ST10/A). The ST131 isolate belonged to the emergent ciprofloxacin-resistant H30R subclone. This study reveals a high percentage of bird as carriers of ESBL/pAmpC E. coli isolates in Spain, highlighting the elevated rate among storks, kites, and vultures. Wild birds can contribute to the global spread of ESBL/pAmpC-producing E. coli in natural ecosystems.

Keywords

ESBL CMY-2 PMQR Escherichia coli Wild birds Spain 

Notes

Acknowledgments

This work was supported in part by Project SAF2012-35474 from the Ministerio de Economía y Competitividad (MINECO) of Spain and the Fondo Europeo de Desarrollo Regional (FEDER). C. A. A. has a predoctoral fellowship from the MINECO (Spain).

We thank the center for wild animal recovering (CRFS) for its kind collaboration in collecting samples and to the Aragón Government that gave permission to work with the wild birds.

References

  1. 1.
    Carattoli A (2013) Plasmids and spread of resistance. Int J Med Microbiol 303:298–304CrossRefPubMedGoogle Scholar
  2. 2.
    Sallem RB, Gharsa H, Slama KB, Rojo-Bezares B, Estepa V, Porres-Osante N, Jouini A, Klibi N, Sáenz Y, Boudabous A, Torres C (2013) First detection of CTX-M-1, CMY-2, and QnrB19 resistance mechanisms in fecal Escherichia coli isolates from healthy pets in Tunisia. Vector Borne Zoonotic Dis 13:98–102CrossRefPubMedGoogle Scholar
  3. 3.
    Wieler LH, Ewers C, Guenther S, Walther B, Lübke-Becker A (2011) Methicillin-resistant staphylococci (MRS) and extended spectrum-betalactamases (ESBL)-producing Enterobacteriaceae in companion animals: nosocomial infections as one reason for the rising prevalence of these potential zoonotic pathogens in clinical samples. Int J Med Microbiol 301:635–641CrossRefPubMedGoogle Scholar
  4. 4.
    Smet A, Martel A, Persoons D, Dewulf J, Heyndrickx M, Herman L, Haesebrouck F, Butaye P (2010) Broad-spectrum β-lactamases among Enterobacteriaceae of animal origin: molecular aspects, mobility and impact on public health. FEMS Microbiol Rev 34:295–316CrossRefPubMedGoogle Scholar
  5. 5.
    Dierikx C, van der Goot J, Fabri T, van Essen-Zandbergen A, Smith H, Mevius D (2013) Extended-spectrum-β-lactamase- and AmpC-β-lactamase-producing Escherichia coli in Dutch broilers and broiler farmers. J Antimicrob Chemother 68:60–67CrossRefPubMedGoogle Scholar
  6. 6.
    Jouini A, Vinué L, Slama KB, Sáenz Y, Klibi N, Hammami S, Boudabous A, Torres C (2007) Characterization of CTX-M and SHV extended-spectrum beta-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. J Antimicrob Chemother 60:1137–1141CrossRefPubMedGoogle Scholar
  7. 7.
    Egervärn M, Börjesson S, Byfors S, Finn M, Kaipe C, Englund S, Lindblad M (2014) Escherichia coli with extended-spectrum beta-lactamases or transferable AmpC beta-lactamases and Salmonella on meat imported into Sweden. Int J Food Microbiol 171:8–14CrossRefPubMedGoogle Scholar
  8. 8.
    Poeta P, Radhouani H, Igrajas J, Goncalves A, Carvalho C, Rodrigues J, Vinué L, Somalo S, Torres C (2008) Seagulls of Berlengas natural reserve of Portugal as carriers of faecal Escherichia coli harboring CTX-M and TEM extended-spectrum beta-lactamases. Appl Environ Microbiol 74:7439–7441CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Literak I, Dolejska M, Janoszowska D, Hrusakova J, Meissner W, Rzyska H, Bzoma D, Cizek A (2010) Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended-spectrum beta-lactamase and QnrS, in water birds on the Baltic Sea Coast of Poland. Appl Environ Microbiol 76:8126–8134CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Pinto L, Radhouani H, Coelho C, Martins da Costa P, Simoes R, Brandao RML, Torres C, Igrejas G, Poeta P (2010) Genetic detection of extended-spectrum β-lactamase-containing Escherichia coli isolates from birds of prey from Serra da Estrela Natural Reserve in Portugal. Appl Environ Microbiol 76:4118–4120CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Hernández J, Johansson A, Stedt J, Bengtsson S, Porczak A, Granholm S, González-Acuña D, Olsen B, Bonnedahl J, Drobni M (2013) Characterization and comparison of extended- spectrum β-lactamase (ESBL) resistance genotypes and population structure of Escherichia coli isolated from Franklin’s gulls (Leucophaeus pipixcan) and humans in Chile. PLoS One 8, e76150CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Veldman K, van Tulden P, Kant A, Testerink J, Mevius D (2013) Characteristics of cefotaxime-resistant Escherichia coli from wild birds in the Netherlands. Appl Environ Microbiol 79:7556–7561CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Guenther S, Ewers C, Wieler LH (2011) Extended-spectrum beta-lactamases producing E. coli in wildlife, yet another form of environmental pollution? Front Microbiol 2:246CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Nelson M, Jones SH, Edwards C, Ellis JC (2008) Characterization of Escherichia coli populations from gulls, landfill trash, and wastewater using ribotyping. Dis Aquat Organ 81:53–63CrossRefPubMedGoogle Scholar
  15. 15.
    Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J (2010) Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol 8:251–259CrossRefPubMedGoogle Scholar
  16. 16.
    Guenther S, Aschenbrenner K, Stamm I, Bethe A, Semmler T, Stubbe A, Stubbe M, Batsajkhan N, Glupczynski Y, Wieler LH, Ewers C (2012) Comparable high rates of extended-spectrum-beta-lactamase-producing Escherichia coli in birds of prey from Germany and Mongolia. PLoS One 7, e53039CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tellería JL (2009) Potential impacts of wind farms on migratory birds crossing Spain. Bird Conserv Int 19:131–136CrossRefGoogle Scholar
  18. 18.
    Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (2010) Métodos de identificación bacteriana en el laboratorio de microbiología. Available at: http://www.seimc.org/contenidos/documentoscientificos/procedimientosmicrobiologia/seimc-procedimientomicrobiologia37.pdf
  19. 19.
    Heininger A, Binder M, Schmidt S (1999) PCR and blood culture for detection of Escherichia coli bacteremia in rats. J Clin Microbiol 37:2479–2482PubMedPubMedCentralGoogle Scholar
  20. 20.
    Clinical and Laboratory Standards Institute (2015) Performance standards for antimicrobial susceptibility testing. Twenty-fifth informational supplement. CLSI document M100-S25.Google Scholar
  21. 21.
    Pérez-Pérez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vinué L, Sáenz Y, Martinez S, Somalo S, Moreno MA, Torres C, Zarazaga M (2008) Prevalence and diversity of extended-spectrum beta-lactamases in faecal Escherichia coli isolates from healthy humans in Spain. Clin Microbiol Infect 15:954–957CrossRefGoogle Scholar
  23. 23.
    Ruiz E, Sáenz Y, Zarazaga M, Rocha-Gracia R, Martínez-Martínez L, Arlet G, Torres C (2012) qnr, aac(6')-Ib-cr and qepA genes in Escherichia coli and Klebsiella spp.: genetic environments and plasmid and chromosomal location. J Antimicrob Chemother 67:886–897CrossRefPubMedGoogle Scholar
  24. 24.
    Clermont O, Bonacorsi S, Bingen E (2000) Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66:4555–4558CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Arbeit RD, Arthur M, Dum RD, Kim C, Selander RK, Goldstein R (1990) Resolution of recent evolutionary divergence among Escherichia coli from related lineages: the application of pulsed field gel electrophoresis to molecular epidemiology. J Infect Dis 161:230–235CrossRefPubMedGoogle Scholar
  26. 26.
    Tenover FC, Arbeit RD, Goering RV, Mikelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-filed gel electrophoresis criteria for bacterial strain typing. J Clin Microbiol 33:2233–2239PubMedPubMedCentralGoogle Scholar
  27. 27.
    Weissman SJ, Jhonson JR, Tchesnokova V, Billig M, Dykhuizen D, Riddell K, Rogers P, Qin X, Butler-Wu S, Cookson BT, Fang FC, Scholes D, Chattopadhyay S, Sokurenko E (2012) High-resolution two-locus clonal typing of extraintestinal pathogenic Escherichia coli. Appl Environ Microbiol 78:1353–1360CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Costa D, Poeta P, Sáenz Y, Vinué L, Rojo-Bezares B, Jouini A, Zarazaga M, Rodrigues J, Torres C (2006) Detection of Escherichia coli harbouring extended-spectrum β-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. J Antimicrob Chemother 58:1311–1312CrossRefPubMedGoogle Scholar
  29. 29.
    Bonnedahl J, Drobni M, Gauthier-Clerc M, Hernández J, Granholm S, Kayser Y, Melhus A, Kahlmeter G, Waldenström J, Johansson A, Olsen B (2009) Dissemination of Escherichia coli with CTX-M-type ESBL between humans and yellow-legged gulls in the south of France. PLoS One 4(6), e5958CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dagmar T, Dolejska M, Cizek A, Hanusova L, Hrusakova J, Svoboda O, Camlik G, Literak I (2012) Escherichia coli with extended-spectrum β-lactamase and plasmid-mediated quinolone resistance genes in great cormorants and mallards in Central Europe. J Antimicrob Chemother 67:1103–1107CrossRefGoogle Scholar
  31. 31.
    Poirel L, Potron A, De La Cuesta C, Cleary T, Nordmann P, Munoz-Price LS (2012) Wild coastline birds as reservoirs of broad-spectrum-β- lactamase-producing Enterobacteriaceae in Miami Beach, Florida. Antimicrob Agents Chemother 56:2756–2758CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Díaz MA, Hernández-Bello JR, Rodríguez-Baño J, Martínez-Martínez L, Calvo J, Blanco J, Pascual A (2010) Diversity of Escherichia coli strains producing extended-spectrum β-lactamases in Spain: second nationwide study. J Clin Microbiol 48:2840–2845CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fernández-Reyes M, Vicente D, Gomariz M, Esnal O, Landa J, Oñate E, Pérez-Trallero E (2014) High rate of fecal carriage of extended-spectrum-β-lactamase-producing Escherichia coli in healthy children in Gipuzkoa, Northern Spain. Antimicrob Agents Chemother 58:1822–1824CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Egea P, López-Cerero L, Gómez-Sánchez MC, Serrano L, Navarro Sánchez-Ortiz MD, Rodríguez-Baño J, Pascual A (2012) Increased raw poultry meat colonization by extended spectrum beta-lactamase-producing Escherichia coli in the south of Spain. Int J Food Microbiol 159:69–73CrossRefPubMedGoogle Scholar
  35. 35.
    Tracz DM, Boyd DA, Hizon R, Bryce E, McGeer A, Ofner-Agostini M, Simor AE, Paton S, Mulvey MR, the Canadian Nosocomial Infection Surveillance Program (2007) ampC gene expression in promoter mutants of cefoxitin-resistant Escherichia coli clinical isolates. FEMS Microbiol lett 270:265–271CrossRefGoogle Scholar
  36. 36.
    Guenther S, Grobbel M, Lubke-Becker A, Goedecke A, Friedrich ND, Wieler LH, Ewers C (2010) Antimicrobial resistance profiles of Escherichia coli from common European wild bird species. Vet Microbiol 144:219–225CrossRefPubMedGoogle Scholar
  37. 37.
    Yang T, Zeng Z, Rao L, Chen X, He D, Lv L, Wang J, Zeng L, Feng M, Liu JH (2014) The association between occurrence of plasmid-mediated quinolone resistance and ciprofloxacin resistance in Escherichia coli isolates of different origins. Vet Microbiol 170:89–96CrossRefPubMedGoogle Scholar
  38. 38.
    Picard B, García JS, Gouriou S, Duriez P, Brahimi N, Bingen E, Elion J, Denamur E (1999) The link between phylogeny and virulence in Escherichia coli extraintestinal infection. Infect Immun 67:546–553PubMedPubMedCentralGoogle Scholar
  39. 39.
    Johnson JR, Tchesnokova V, Johnston B, Clabots C, Roberts PL, Billig M, Riddell K, Rogers P, Qin X, Butler-Wu S, Price LB, Aziz M, Nicolas Chanoine MH, Debroy C, Robicsek A, Hansen G, Urban C, Platell J, Trott DJ, Zhanel G, Weissman SJ, Cookson BT, Fang FC, Limaye AP, Scholes D, Chattopadhyay S, Hooper DC, Sokurenko EV (2013) Abrupt emergence of a single dominant multidrug-resistant strain of Escherichia coli. J Infect Dis 207:919–928CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Platell JL, Johnson JR, Cobbold RN, Trott DJ (2011) Multidrug-resistant extraintestinal pathogenic Escherichia coli of sequence type ST131 in animals and food. Vet Microbiol 153:99–108CrossRefPubMedGoogle Scholar
  41. 41.
    Vredenburg J, Varela AR, Hasan B, Bertilsson S, Olsen B, Narciso-da-Rocha C, Bonnedahl J, Stedt J, Da Costa PM, Manaia CM (2014) Quinolone-resistant Escherichia coli isolated from birds of prey in Portugal are genetically distinct from those isolated from water environments and gulls in Portugal, Spain and Sweden. Environ Microbiol 16:995–1004CrossRefPubMedGoogle Scholar
  42. 42.
    Oteo J, Diestra K, Juan C, Bautista V, Novais A, Pérez-Vázquez M, Moyá B, Miró E, Coque TM, Oliver A, Cantón R, Navarro F, Campos J (2009) Extended-spectrum beta-lactamase-producing Escherichia coli in Spain belong to a large variety of multilocus sequence typing types, including ST10complex/A, ST23complex/A andST131/B2. Int J Antimicrob Agents 34:173–176CrossRefPubMedGoogle Scholar
  43. 43.
    Radhouani H, Silva N, Poeta P, Torres C, Correia S, Igrejas G (2014) Potential impact of antimicrobial resistance in wild life, environment, and human health. Front Microbiol 5:23CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Blanco G, Lemus JA, Grande J, Gangoso L, Grande JM, Donázar JA, Arroyo B, Frías O, Hiraldo F (2007) Geographical variation in cloacal microflora and bacterial antibiotic resistance in a threatened avian scavenger in relation to diet and livestock farming practices. Environ Microbiol 9:1738–1739CrossRefPubMedGoogle Scholar
  45. 45.
    Rodríguez-Baño J, Alcalá J, Cisneros JM, Grill F, Oliver A, Horcajada JP, Tortola T, Mirelis B, Navarro G, Cuenca M, Esteve M, Pena C, Llanos AC, Canton R, Pascual A (2009) Escherichia coli producing SHV-type extended-spectrum betalactamase is a significant cause of community-acquired infection. J Antimicrob Chemother 63:781–784CrossRefPubMedGoogle Scholar
  46. 46.
    Briñas L, Moreno MA, Teshager T, Sáenz T, Porrero MC, Domínguez L, Torres C (2003) Monitoring and characterization of extended-spectrum β-lactamases in Escherichia coli strains from healthy and sick animals in Spain in 2003. Antimicrob Agents Chemother 49:1262–1264CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Facultad de VeterinariaUniversidad de ZaragozaZaragozaSpain
  2. 2.Área de Bioquímica y Biología MolecularUniversidad de La RiojaLogroñoSpain
  3. 3.Centro de Recuperación de Fauna Silvestre de La Alfranca, Departamento de AgriculturaGanadería y Medio AmbienteGobierno de AragónSpain
  4. 4.Servicio de MicrobiologíaHospital Universitario Miguel Servet, Zaragoza, Universidad de ZaragozaIIS AragónSpain

Personalised recommendations