Microbial Ecology

, Volume 71, Issue 3, pp 672–685 | Cite as

Diversity and Distribution of Arsenic-Related Genes Along a Pollution Gradient in a River Affected by Acid Mine Drainage

  • Angélique Desoeuvre
  • Corinne Casiot
  • Marina HéryEmail author
Environmental Microbiology


Some microorganisms have the capacity to interact with arsenic through resistance or metabolic processes. Their activities contribute to the fate of arsenic in contaminated ecosystems. To investigate the genetic potential involved in these interactions in a zone of confluence between a pristine river and an arsenic-rich acid mine drainage, we explored the diversity of marker genes for arsenic resistance (arsB, acr3.1, acr3.2), methylation (arsM), and respiration (arrA) in waters characterized by contrasted concentrations of metallic elements (including arsenic) and pH. While arsB-carrying bacteria were representative of pristine waters, Acr3 proteins may confer to generalist bacteria the capacity to cope with an increase of contamination. arsM showed an unexpected wide distribution, suggesting biomethylation may impact arsenic fate in contaminated aquatic ecosystems. arrA gene survey suggested that only specialist microorganisms (adapted to moderately or extremely contaminated environments) have the capacity to respire arsenate. Their distribution, modulated by water chemistry, attested the specialist nature of the arsenate respirers. This is the first report of the impact of an acid mine drainage on the diversity and distribution of arsenic (As)-related genes in river waters. The fate of arsenic in this ecosystem is probably under the influence of the abundance and activity of specific microbial populations involved in different As biotransformations.


Microbial ecotoxicology Arsenic biotransformations Functional gene diversity Acid mine drainage 



We thank the University of Montpellier, the IRD, and the OSU OREME for financial support. We thank Yong-Guan Zhu, Si-Yu Zhang, and Yan Jia (Chinese Academy of Sciences) for useful discussions about arsM primers and Ludovic Giloteaux (Cornell University, USA) for useful discussion about arsB and acr3p genes. The authors wish also to thank David Karlin for his suggestions for improvement of the manuscript.

Supplementary material

248_2015_710_MOESM1_ESM.doc (1 mb)
ESM 1 (DOC 1032 kb)


  1. 1.
    Johnson DB, Hallberg KB (2004) The microbiology of acidic mine waters. Res Microbiol 154:466–473CrossRefGoogle Scholar
  2. 2.
    Hallberg KB, Johnson DB (2005) Microbiology of a wetland ecosystem constructed to remediate mine drainage from a heavy metal mine. Sci Total Environ 338:53–66CrossRefPubMedGoogle Scholar
  3. 3.
    Casiot C, Leblanc M, Bruneel O, Personné JC, Koffi K, Elbaz-Poulichet F (2003) Geochemical processes controlling the formation of As-rich waters within a tailings impoundment (Carnoulès, France). Aquat Geochem 9:273–290CrossRefGoogle Scholar
  4. 4.
    Egal M, Casiot C, Morin G, Elbaz-Poulichet F, Cordier MA, Bruneel O (2010) An updated insight into the natural attenuation of As concentrations in Reigous Creek (southern France). Appl Geochem 25:1949–1957CrossRefGoogle Scholar
  5. 5.
    Héry M, Casiot C, Resongles E, Gallice Z, Bruneel O, Desoeuvre A, Delpoux S (2014) Release of arsenite, arsenate and methyl-arsenic species from streambed sediment affected by acid mine drainage: a microcosm study. Environ Chem 11:514CrossRefGoogle Scholar
  6. 6.
    Hallberg KB (2010) New perspectives in acid mine drainage microbiology. Hydrometallurgy 104:448–453CrossRefGoogle Scholar
  7. 7.
    Mohapatra BR, Douglas Gould W, Dinardo O, Koren DW (2011) Tracking the prokaryotic diversity in acid mine drainage-contaminated environments: a review of molecular methods. Miner Eng 24:709–718CrossRefGoogle Scholar
  8. 8.
    Bruneel O, Duran R, Casiot C, Elbaz-Poulichet F, Personne JC (2006) Diversity of microorganisms in Fe-As-rich acid mine drainage waters of Carnoules, France. Appl Environ Microbiol 72:551–556CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Volant A, Desoeuvre A, Casiot C, Lauga B, Delpoux S, Morin G, Personné JC et al (2012) Archaeal diversity: temporal variation in the arsenic-rich creek sediments of Carnoulès Mine, France. Extremophiles 16:645–657CrossRefPubMedGoogle Scholar
  10. 10.
    Volant A, Bruneel O, Desoeuvre A, Héry M, Casiot C, Bru N, Delpoux S et al (2014) Diversity and spatiotemporal dynamics of bacterial communities: physicochemical and other drivers along an acid mine drainage. FEMS Microbiol Ecol 90:247–263CrossRefPubMedGoogle Scholar
  11. 11.
    Bertin PN, Heinrich-Salmeron A, Pelletier E, Goulhen-Chollet F, Arsène-Ploetze F, Gallien S, Lauga B et al (2011) Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME J 5:1735–1747CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Fahy A, Giloteaux L, Bertin P, Le Paslier D, Médigue C, Weissenbach J, Duran R et al (2015) 16S rRNA and As-related functional diversity: contrasting fingerprints in arsenic-rich sediments from an acid mine drainage. Microb Ecol 70:154–67CrossRefPubMedGoogle Scholar
  13. 13.
    Rosen BP (1999) Families of arsenic transporters. Trends Microbiol 7:207–212CrossRefPubMedGoogle Scholar
  14. 14.
    Yang Y, Wu S, Lilley RM, Zhang R (2015) The diversity of membrane transporters encoded in bacterial arsenic-resistance operons. Peer J 3:943CrossRefGoogle Scholar
  15. 15.
    Achour AR, Bauda P, Billard P (2007) Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol 158:128–137CrossRefPubMedGoogle Scholar
  16. 16.
    Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92CrossRefPubMedGoogle Scholar
  17. 17.
    Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300:939–944CrossRefPubMedGoogle Scholar
  18. 18.
    Hug K, Maher WA, Stott MB, Krikowa F, Foster S, Moreau JW (2014) Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand. Front Microbiol 5:569CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Wang PP, Bao P, Sun GX (2015) Identification and catalytic residues of the arsenite methyltransferase from a sulfate-reducing bacterium, Clostridium sp. BXM FEMS Microbiol Let 362:1–8CrossRefGoogle Scholar
  20. 20.
    Zhang J, Cao T, Tang Z, Shen Q, Rosen BP, Zhao FJ (2015) Arsenic methylation and volatilization by arsenite S-adenosylmethionine methyltransferase in Pseudomonas alcaligenes NBRC14159. Appl Environ Microbiol 81:2852–2860CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mestrot A, Feldmann J, Krupp EM, Hossain MS, Roman-Ross G, Meharg AA (2011) Field fluxes and speciation of arsines emanating from soils. Environ Sci Technol 45:1798–1804CrossRefPubMedGoogle Scholar
  22. 22.
    Singh JS, Abhilash C, Singh NB, Singh R, Singh D (2011) Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene 480:1–9CrossRefPubMedGoogle Scholar
  23. 23.
    Chen J, Sun GX, Wang XX, de Lorenzo V, Rosen BP, Zhu YG (2014) Volatilization of arsenic from polluted soil by Pseudomonas putida engineered for expression of the arsM arsenic(III) S-adenosine methyltransferase gene. Environ Sci Technol 48:10337–10344CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yin XX, Chen J, Qin J, Sun GX, Rosen BP, Zhu YG (2011) Biotransformation and volatilization of arsenic by three photosynthetic cyanobacteria. PLANT Physiol 156:1631–1638CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Jia Y, Huang H, Zhong M, Wang FH, Zhang LM, Zhu YG (2013) Microbial arsenic methylation in soil and rice rhizosphere. Environ Sci Technol 47:3141–3148PubMedGoogle Scholar
  26. 26.
    Zhao FJ, Harris E, Yan J, Ma J, Wu L, Liu W, McGrath S et al (2013) Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and As speciation in rice. Environ Sci Technol 47:7147–7154PubMedGoogle Scholar
  27. 27.
    Zhang SY, Zhao FJ, Sun GX, Su JQ, Yang XR, Li H et al (2015) Diversity and abundance of arsenic biotransformation genes in paddy soils from southern China. Environ Sci Technol 49:4138–4146CrossRefPubMedGoogle Scholar
  28. 28.
    Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13:45–49CrossRefPubMedGoogle Scholar
  29. 29.
    Ahmann D, Roberts AL, Krumholz LR, Morel FMM (1994) Microbe grows by reducing arsenic 371:750Google Scholar
  30. 30.
    Malasarn D, Saltikov CW, Campbell KM, Santini JM, Hering JG, Newman DK (2004) arrA is a reliable marker for As(V) respiration. Science 306:455–455CrossRefPubMedGoogle Scholar
  31. 31.
    Leblanc M, Achard B, Ben Othman D, Luck JM, Bertrand-Sarfati J, Personné JC (1996) Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions (stromatolites). Appl Geochem 11:541–554CrossRefGoogle Scholar
  32. 32.
  33. 33.
    Casiot C, Lebrun S, Morin G, Bruneel O, Personne JC, Elbaz Poulichet F (2005) Sorption and redox processes controlling arsenic fate and transport in a stream impacted by acid mine drainage. Sci Total Environ 347:122–130CrossRefPubMedGoogle Scholar
  34. 34.
    Casiot C, Egal M, Elbaz-Poulichet F, Bruneel O, Bancon-Montigny C, Cordier MA, Gomez E et al (2009) Hydrological and geochemical control of metals and arsenic in a Mediterranean river contaminated by acid mine drainage (the Amous River, France); preliminary assessment of impacts on fish (Leuciscus cephalus). Appl Geochem 24:787–799CrossRefGoogle Scholar
  35. 35.
    Fisher E, Dawson AM, Polshyna G, Lisak J, Crable B, Perera E, Ranganathan (2008) Transformation of inorganic and organic arsenic by Alkaliphilus oremlandii sp. nov. strain OhILAs. Ann NY Acad Sci 1125:230–241CrossRefPubMedGoogle Scholar
  36. 36.
    Lear G, Song B, Gault AG, Polya DA, Lloyd JR (2007) Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl Environ Microbiol 73:1041–1048CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Héry M, Van Dongen BE, Gill F, Mondal D, Vaughan DJ, Pancost RD, Polya DA, Lloyd JR (2010) Arsenic release and attenuation in low organic carbon aquifer sediments from West Bengal. Geobiology 8:155–168CrossRefPubMedGoogle Scholar
  38. 38.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  40. 40.
    Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bruneel O, Personne JC, Casiot C, Leblanc M, Elbaz-Poulichet F, Mahler BJ, Le Fleche A et al (2003) Mediation of arsenic oxidation by Thiomonas sp. in acid-mine drainage (Carnoules, France). J Appl Microbiol 95:492–499CrossRefPubMedGoogle Scholar
  43. 43.
    Duquesne K, Lieutaud A, Ratouchniak J, Muller D, Lett MC, Bonnefoy V (2008) Arsenite oxidation by a chemoautotrophic moderately acidophilic Thiomonas sp.: from the strain isolation to the gene study. Environ Microbiol 10:228–237PubMedGoogle Scholar
  44. 44.
    Marapakala K, Qin J, Rosen BP (2012) Identification of catalytic residues in the As(III) S-adenosyl methionine methyltransferase. Biochemistry 51:944–951CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Páez-Espino D, Tamames J, de Lorenzo V, Cánovas D (2009) Microbial responses to environmental arsenic. BioMetals 22:117–130CrossRefPubMedGoogle Scholar
  46. 46.
    Cai L, Liu G, Rensing C, Wang G (2009) Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol 9:4CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Héry M, Rizoulis A, Sanguin H, Cooke DA, Pancost RD, Polya DA, Lloyd JR (2015) Microbial ecology of arsenic-mobilizing Cambodian sediments: lithological controls uncovered by stable-isotope probing: As mobilization in contrasting Cambodian sediments. Environ Microbiol 17:1857–69CrossRefPubMedGoogle Scholar
  48. 48.
    Giloteaux L, Holmes DE, Williams KH, Wrighton KC, Wilkins MJ, Montgomery A, Smith JA et al (2013) Characterization and transcription of arsenic respiration and resistance genes during in situ uranium bioremediation. ISME J 7:370–383CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Lloyd JR, Gault AG, Héry M, MacRae JD (2011) Microbial transformations of arsenic in the subsurface. In: Stolz JF, Oremland RS (eds) Environmental Microbe-Metal Interactions II. ASM Press, WashingtonGoogle Scholar
  50. 50.
    Mumford AC, Barringer JL, Benzel WM, Reilly A, Young LY (2012) Microbial transformations of arsenic: mobilization from glauconitic sediments to water. Water Res 46:2859–2868CrossRefPubMedGoogle Scholar
  51. 51.
    Mumford AC, Barringer JL, Reilly A, Eberl DD, Blum AE, Young LY (2015) Biogeochemical environments of streambed-sediment pore waters with and without arsenic enrichment in a sedimentary rock terrain, New Jersey Piedmont, USA. Sci Total Environ 505:1350–1360CrossRefPubMedGoogle Scholar
  52. 52.
    Hollibaugh JT, Budinoff C, Hollibaugh RA, Ransom B, Bano N (2006) Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake. Appl Environ Microbiol 72:2043–2049CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Kulp TR, Hoeft SE, Miller LG, Saltikov C, Murphy JN, Han S, Lanoil B, Oremland RS (2006) Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California. Appl Environ Microbiol 72:6514–6526CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Kulp TR, Han S, Saltikov CW, Lanoil BD, Zargar K, Oremland RS (2007) Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes. Appl Environ Microbiol 73:5130–5137CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Song B, Chyun E, Jaffé R, Ward BB (2009) Molecular methods to detect and monitor dissimilatory arsenate-respiring bacteria (DARB) in sediments: arrA gene detection in sediment. FEMS Microbiol Ecol 68:108–117CrossRefPubMedGoogle Scholar
  56. 56.
    Jia Y, Huang H, Chen Z, Zhu YG (2014) Arsenic uptake by rice is influenced by microbe-mediated arsenic redox changes in the rhizosphere. Environ Sci Technol 48:1001–1007CrossRefPubMedGoogle Scholar
  57. 57.
    Drewniak L, Maryan N, Lewandowski W, Kaczanowski S, Sklodowska A (2012) The contribution of microbial mats to the arsenic geochemistry of an ancient gold mine. Environ Pollut 162:190–201CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Angélique Desoeuvre
    • 1
  • Corinne Casiot
    • 1
  • Marina Héry
    • 1
    Email author
  1. 1.Laboratoire HydroSciences Montpellier, HSM, UMR 5569 IRD, CNRSUniversité MontpellierMontpellierFrance

Personalised recommendations