Advertisement

Microbial Ecology

, Volume 71, Issue 2, pp 375–386 | Cite as

Atmospheric Dispersal of Bioactive Streptomyces albidoflavus Strains Among Terrestrial and Marine Environments

  • Aida Sarmiento-Vizcaíno
  • Alfredo F. Braña
  • Verónica González
  • Herminio Nava
  • Axayacatl Molina
  • Eva Llera
  • Hans-Peter Fiedler
  • José M. Rico
  • Lucía García-Flórez
  • José L. Acuña
  • Luis A. García
  • Gloria BlancoEmail author
Environmental Microbiology

Abstract

Members of the Streptomyces albidoflavus clade, identified by 16S rRNA sequencing and phylogenetic analyses, are widespread among predominant terrestrial lichens (Flavoparmelia caperata and Xanthoria parietina) and diverse intertidal and subtidal marine macroalgae, brown red and green (Phylum Heterokontophyta, Rhodophyta, and Chlorophyta) from the Cantabrian Cornice. In addition to these terrestrial and coastal temperate habitats, similar strains were also found to colonize deep-sea ecosystems and were isolated mainly from gorgonian and solitary corals and other invertebrates (Phylum Cnidaria, Annelida, Echinodermata, Arthropoda, and Porifera) living up to 4700-m depth and at a temperature of 2–4 °C in the submarine Avilés Canyon. Similar strains have been also repeatedly isolated from atmospheric precipitations (rain drops, snow, and hailstone) collected in the same area throughout a year observation time. These ubiquitous strains were found to be halotolerant, psychrotolerant, and barotolerant. Bioactive compounds with diverse antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. These include antibacterials (paulomycins A and B), antifungals (maltophilins), antifungals displaying also cytotoxic activities (antimycins and 6-epialteramides), and the antitumor compound fredericamycin. A hypothetical dispersion model is here proposed to explain the biogeographical distribution of S. albidoflavus strains in terrestrial, marine, and atmospheric environments.

Keywords

Actinobacteria Lichens Seaweeds Corals Avilés Canyon Clouds Antibiotic Antitumor 

Notes

Acknowledgments

This study was financially supported by the Universidad de Oviedo (UNOV-11-MA-02), Gobierno del Principado de Asturias (SV-PA-13-ECOEMP-62), and Ministerio de Economía y Competitividad, Proyecto DOSMARES/BIOCANT (MICINN-10-CTM2010-21810-C03-02). The authors are grateful to Ricardo Anadón and all other participants in the BIOCANT3 cruise. The authors want to thank all the people who contributed to sample collection, especially to Gloria Blanco Sotura, Manuela Blanco, Rubén Medina, and Noé Medina. We are also grateful to Santiago Cal for his valuable help, to José L. Caso and José A. Guijarro for continuous support and to Carlos Sialer for his help at the beginning of this work. We finally thank Miguel Campoamor and Marcos García for their excellent technical assistance and M. Carmen Macián (CECT) for her help in the identification of the strains. This is a contribution of the Asturias Marine Observatory.

Supplementary material

248_2015_654_MOESM1_ESM.pdf (129 kb)
Supplemental 1 Locations from which lichen samples were collected, with indication of geographical coordinates and collection dates. (PDF 129 kb)
248_2015_654_MOESM2_ESM.tif (87 kb)
Supplemental 2 Volatile profile of representative S. albidoflavus strains obtained through GS-MS analysis. Peak numbers indicate the compounds identified by comparison with the Whiley database as: geosmin (7); beta-patchoulene (8). (PDF 87 kb)

References

  1. 1.
    Ai H, Zhou J, Lu H, Guo J (2009) Responses of a novel salt-tolerant Streptomyces albidoflavus DUT_AHX capable of degrading nitrobenzene to salinity stress. Biodegradation 20:67–77CrossRefPubMedGoogle Scholar
  2. 2.
    Amato P, Parazols M, Sancelme M, Laj P, Mailhot G, Delort AM (2007) Microorganisms isolated from the water phase of tropospheric clouds at the Puy de Dôme: major groups and growth abilities at low temperatures. FEMS Microbiol Ecol 59:242–254CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson AS, Wellington EMH (2001) The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51:797–814CrossRefPubMedGoogle Scholar
  4. 4.
    Antony-Babu S, Stach JE, Goodfellow M (2008) Genetic and phenotypic evidence for Streptomyces griseus ecovars isolated from a beach and dune sand system. Antonie Van Leeuwenhoek 94:63–74CrossRefPubMedGoogle Scholar
  5. 5.
    Argoudelis AD, Brinkley TA, Brodasky TF, Buege JA, Meyer HF, Mizsak SA (1982) Paulomycins A and B. Isolation and characterization. J Antibiot (Tokyo) 35:285–94CrossRefGoogle Scholar
  6. 6.
    Blanchard DC (1989) The ejection of drops from the sea and their enrichment with bacteria and other materials-A review. Estuaries 12:557–576CrossRefGoogle Scholar
  7. 7.
    Bottos EM, Woo AC, Zawar-Reza P, Pointing SB, Cary SC (2014) Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica. Microb Ecol 67:120–8PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Braña AF, Fiedler H-P, Nava H, González V, Sarmiento-Vizcaíno A, Molina A, Acuña JL, García LA, Blanco G (2015) Two Streptomyces species producing antibiotic, antitumor, and anti inflammatory compounds are widespread among intertidal macroalgae and deep sea coral reef invertebrates from the Central Cantabrian sea. Microb Ecol 69:512–24CrossRefPubMedGoogle Scholar
  9. 9.
    Braña AF, Rodríguez M, Pahari P, Rohr J, García LA, Blanco G (2014) Activation and silencing of secondary metabolites in Streptomyces albus and Streptomyces lividans after transformation with cosmids containing the thienamycin gene cluster from Streptomyces cattleya. Arch Microbiol 196:345–55CrossRefPubMedGoogle Scholar
  10. 10.
    Cane DE, Ikeda H (2011) Exploration and mining of the bacterial terpenome. Acc Chem Res 45:463–472PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Chiang YM, Chang SL, Oakley BR, Wang CC (2011) Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr Opin Chem Biol 15:137–43PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW (2007) EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261CrossRefPubMedGoogle Scholar
  13. 13.
    Creamean JM, Suski KJ, Rosenfeld D, Cazorla A, DeMott PJ, Sullivan RC, White AB, Ralph FM, Minnis P, Comstock JM, Tomlinson JM, Prather KA (2013) Dust and biological aerosols from the Sahara and Asia influence precipitation in the western U.S. Science 339:1572–8CrossRefPubMedGoogle Scholar
  14. 14.
    Davies J, Davies D (2010) Origins an evolution of antibiotic resistance. Microbiol Mol Biol Rev 74:417–433PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    DeLeon-Rodriguez N, Lathem TL, Rodriguez-R LM, Barazesh JM, Anderson BE, Beyersdorf AJ, Ziemba LD, Bergin M, Nenes A, Konstantinidis KT (2013) Microbiome of the upper troposphere: species composition and prevalence, effects of tropical storms, and atmospheric implications. Proc Natl Acad Sci U S A 110:2575–80PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Delort AM, Vaïtilingom M, Amato P, Sancelme M, Parazols M, Mailhot G, Laj P, Deguillaume L (2010) A short overview of the microbial population in clouds: Potential roles in atmospheric chemistry and nucleation processes. Atmos Res 98:249–260CrossRefGoogle Scholar
  17. 17.
    Fiedler HP (1993) Biosynthetic capacities of actinomycetes. 1. Screening for secondary metabolites by HPLC and UV-visible absorbance spectral libraries. Nat Prod Lett 2:119–128CrossRefGoogle Scholar
  18. 18.
    Fiedler HP, Bruntner C, Bull AT, Ward AC, Goodfellow M, Potterat O, Puder C, Mihm G (2005) Marine actinomycetes as a source of novel secondary metabolites. Antonie Van Leeuwenhoek 87:37–42CrossRefPubMedGoogle Scholar
  19. 19.
    Genilloud O, Peláez F, González I, Díez MT (1994) Diversity of actinomycetes and fungi on seaweeds from the Iberian coasts. Microbiologia 10:413–422PubMedGoogle Scholar
  20. 20.
    González I, Ayuso-Sacido A, Anderson A, Genilloud O (2005) Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynhtetic gene sequences. FEMS Microbiol Ecol 54:401–15CrossRefPubMedGoogle Scholar
  21. 21.
    Gust B, Challis GL, Fowler K, Kieser T, Chater K (2003) PCR targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1546PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Jachymova J, Votruba J, Viden I, Rezanka T (2002) Identification of Streptomyces odor spectrum. Folia Microbiol 47:37–41CrossRefGoogle Scholar
  23. 23.
    Jakobi M, Winkelmann G, Kaiser D, Kempler C, Jung G, Berg G, Bahl H (1996) Maltophilin: a new antifungal compound produced by Stenotrophomonas maltophilia R3089. J Antibiot 49:1101–1104CrossRefPubMedGoogle Scholar
  24. 24.
    Kiss Z, Ward AC, Birkó Z, Chater KF, Biró S (2008) Streptomyces griseus 45H, a producer of the extracellular autoregulator protein factor C, is a member of the species Streptomyces albidoflavus. IJSEM 58:1029–1031PubMedGoogle Scholar
  25. 25.
    Kourtev PS, Hill KA, Shepson PB, Konopka A (2011) Atmospheric cloud water contains a diverse bacterial community. Atmos Environ 45:5399–5405CrossRefGoogle Scholar
  26. 26.
    Lam KS (2006) Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251CrossRefPubMedGoogle Scholar
  27. 27.
    Majer J, Chater KF (1987) Streptomyces albus G produces an antibiotic complex identical to paulomycins A and B. J Gen Microbiol 133:2503–7PubMedGoogle Scholar
  28. 28.
    Moree WJ, McConnell OJ, Nguyen DD, Sanchez LM, Yang YL, Zhao X, Liu WT, Boudreau PD, Srinivasan J, Atencio L, Ballesteros J, Gavilán RG, Torres-Mendoza D, Guzmán HM, Gerwick WH, Gutiérrez M, Dorrestein PC (2014) Microbiota of healthy corals are active against fungi in a light-dependent manner. ACS Chem Biol 9:2300–8PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Morris CE, Conen F, Alex Huffman J, Phillips V, Pöschl U, Sands DC (2014) Bioprecipitation: a feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere. Glob Chang Biol 20:341–51CrossRefPubMedGoogle Scholar
  30. 30.
    Novak E (1988) Treating Chlamydia infections with paulomycin. The Upjohn company. Patent PCT/US1987/002420Google Scholar
  31. 31.
    Olano C, García I, González A, Rodriguez M, Rozas D, Rubio J, Sánchez-Hidalgo M, Braña AF, Méndez C, Salas JA (2014) Activation and identification of five clusters for secondary metabolites in Streptomyces albus J1074. Microb Biotechnol 7:242–56PubMedCentralCrossRefPubMedGoogle Scholar
  32. 32.
    Prakasham RS, Buddana SK, Yannam SK, Guntuku GS (2012) Characterization of silver nanoparticles synthesized by using marine isolate Streptomyces albidoflavus. J Microbiol Biotechnol 22:614–2CrossRefPubMedGoogle Scholar
  33. 33.
    Prather KA, Bertram TH, Grassian VH et al (2013) Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc Natl Acad Sci U S A 110:7550–7555PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Rahman O, Cummings SP, Sutcliffe (2008) Phenotypic variation in Streptomyces sp. DSM40537, a lipoteichoic acid producing actinomycete. Lett Appl Microbiol 48:226–229CrossRefPubMedGoogle Scholar
  35. 35.
    Raveh A, Delekta PC, Dobry CJ, Peng W, Schultz PJ, Blakely PK, Tai AW, Matainaho T, Irani DN, Sherman DH, Miller DJ (2013) Discovery of potent broad spectrum antivirals derived from marine actinobacteria. PLoS One 8:e82318PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Rong X, Guo Y, Huang Y (2009) Proposal to reclassify the Streptomyces albidoflavus clade on the basis of multilocus sequence analysis and DNA-DNA hybridization, and taxonomic elucidation of Streptomyces griseus subsp. solvifaciens. Syst Appl Microbiol 32:314–22CrossRefPubMedGoogle Scholar
  37. 37.
    Ryan P, Dow M (2008) Diffusible signals and interspecies communication in bacteria. Microbiology 154:1845–1858CrossRefPubMedGoogle Scholar
  38. 38.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring HarborGoogle Scholar
  39. 39.
    Sarmiento-Vizcaíno A, González V, Braña AF, Molina A, Acuña JL, García LA, Blanco G (2015) Myceligenerans cantabricum sp. nov., a barotolerant actinobacterium isolated from a deep cold water coral. Int J Syst Evol Microbiol. doi: 10.1099/ijs.0.000107 PubMedGoogle Scholar
  40. 40.
    Sattler B, Puxbaum H, Psenner R (2001) Bacterial growth in supercooled cloud droplets. Geophys Res Lett 28:239–242CrossRefGoogle Scholar
  41. 41.
    Seifried JS, Wichels A, Gerdts G (2015) Spatial distribution of marine airborne bacterial communities. Microbiologyopen. doi: 10.1002/mbo3.25 PubMedCentralPubMedGoogle Scholar
  42. 42.
    Seipke RF, Hutchings MI (2013) The regulation and biosynthesis of antimycins. Beilstein J Org Chem 9:2556–63PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Seipke RF, Kaltenpoth M, Hutchings MI (2012) Streptomyces as symbionts: an emerging and widespread teme? FEMS Microbiol Rev 36:862–876CrossRefPubMedGoogle Scholar
  44. 44.
    Shigemori H, Bae MA, Yazawa K, Sasaki T, Kobayashi J (1992) Alteramide A, a new tetracyclic alkaloid from a bacterium Alteromonas sp. associated with the marine sponge Halichondria okadai. J Org Chem 57:4317–4320CrossRefGoogle Scholar
  45. 45.
    Smith DJ (2013) Microbes in the upper atmosphere and unique opportunities for astrobiology research. Astrobiology 13:981–90CrossRefPubMedGoogle Scholar
  46. 46.
    Takimoto H, Machida K, Ueki M, Tanaka T, Taniguchi M (1999) UK-2A, B, C and D, novel antifungal antibiotics from Streptomyces sp. 517–02. IV. Comparative studies of UK-2A with antimycin A3 on cytotoxic activity and reactive oxygen species generation in LLC-PK1 cells. J Antibiot (Tokyo) 52:480–4CrossRefGoogle Scholar
  47. 47.
    Temkiv TS, Finster K, Dittmar T, Hansen BM, Thyrhaug R, Nielsen NW, Karlson UG (2013) Hailstones: a window into the microbial and chemical inventory of a storm cloud. PLoS One 8:e53550. doi: 10.1371/journal.pone.0053550 CrossRefGoogle Scholar
  48. 48.
    Temkiv TS, Finster K, Hansen BM, Nielsen NW, Karlson UG (2012) The microbial diversity of a storm cloud as assessed by hailstones. FEMS Microbiol Ecol 81:684–95CrossRefPubMedGoogle Scholar
  49. 49.
    Tosi L, Sola C (1993) Role of geosmin, a typical inland water odour, in guiding glass eels Angilla angilla (L.) migration. Ethology 95:177–185CrossRefGoogle Scholar
  50. 50.
    Valliappan K, Sun W, Li Z (2014) Marine actinobacteria associated with marine organisms and their potentials in producing pharmaceutical natural products. Appl Microbiol Biotechnol. doi: 10.1007/s00253-014-5954-6 PubMedGoogle Scholar
  51. 51.
    Wang Y, Tang SK, Li Z, Lou K, Mao PH, Jin X, Klenk HP, Zhang LX, Li WJ (2011) Myceligenerans halotolerans sp. nov., an actinomycete isolated from a salt lake, and emended description of the genus Myceligenerans. Int J Syst Evol Microbiol 61:974–978CrossRefPubMedGoogle Scholar
  52. 52.
    Warnick-Pickle DJ, Byrne KM, Pandey RC, White RJ (1981) Fredericamycin A, a new antitumor antibiotic. II. Biological properties. J Antibiot (Tokyo) 34:1402–7CrossRefGoogle Scholar
  53. 53.
    Yan LL, Han NN, Zhang YQ, Yu LY, Chen J, Wei YZ, Li QP, Tao L, Zheng GH, Yang SE, Jiang CX, Zhang XD, Huang Q, Habdin X, Hu QB, Li Z, Liu SW, Zhang ZZ, He QY, Si SY, Sun CH (2010) Antimycin A18 produced by an endophytic Streptomyces albidoflavus isolated from a mangrove plant. J Antibiot (Tokyo) 63:259–61CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Aida Sarmiento-Vizcaíno
    • 1
  • Alfredo F. Braña
    • 1
  • Verónica González
    • 1
  • Herminio Nava
    • 2
  • Axayacatl Molina
    • 3
  • Eva Llera
    • 4
  • Hans-Peter Fiedler
    • 5
  • José M. Rico
    • 3
  • Lucía García-Flórez
    • 4
  • José L. Acuña
    • 3
  • Luis A. García
    • 6
  • Gloria Blanco
    • 1
    Email author
  1. 1.Departamento de Biología Funcional, Área de Microbiología, e Instituto Universitario de Oncología del Principado de AsturiasUniversidad de OviedoOviedoSpain
  2. 2.Departamento de Biología de Organismos y Sistemas, Área de BotánicaUniversidad de OviedoOviedoSpain
  3. 3.Departamento de Biología de Organismos y Sistemas, Área de EcologíaUniversidad de OviedoOviedoSpain
  4. 4.Centro de Experimentación Pesquera del Principado de AsturiasGijónSpain
  5. 5.Mikrobiologisches InstitutUniversität TübingenTübingenGermany
  6. 6.Departamento de Ingeniería Química y Tecnología del Medio Ambiente, Área de Ingeniería QuímicaUniversidad de OviedoOviedoSpain

Personalised recommendations