Skip to main content
Log in

Preening as a Vehicle for Key Bacteria in Hoopoes

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Oily secretions produced in the uropygial gland of incubating female hoopoes contain antimicrobial-producing bacteria that prevent feathers from degradation and eggs from pathogenic infection. Using the beak, females collect the uropygial gland secretion and smear it directly on the eggshells and brood patch. Thus, some bacterial strains detected in the secretion should also be present on the eggshell, beak, and brood patch. To characterize these bacterial communities, we used Automatic Ribosomal Intergenic Spacer Analysis (ARISA), which distinguishes between taxonomically different bacterial strains (i.e. different operational taxonomic units [OTUs]) by the size of the sequence amplified. We identified a total of 146 different OTUs with sizes between 139 and 999 bp. Of these OTUs, 124 were detected in the uropygial oil, 106 on the beak surface, 97 on the brood patch, and 98 on the eggshell. The highest richness of OTUs appeared in the uropygial oil samples. Moreover, the detection of some OTUs on the beak, brood patch, and eggshells of particular nests depended on these OTUs being present in the uropygial oil of the female. These results agree with the hypothesis that symbiotic bacteria are transmitted from the uropygial gland to beak, brood patch, and eggshell surfaces, opening the possibility that the bacterial community of the secretion plays a central role in determining the communities of special hoopoe eggshell structures (i.e., crypts) that, soon after hatching, are filled with uropygial oil, thereby protecting embryos from pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nalepa CA (1994) Nourishment and the origin of termite eusociality. In: Hunt J, Nalepa CA (eds) Nourishment and the evolution of insect societies. Boulder, Colorado, pp 57–104

    Google Scholar 

  2. Ley RE, Lozupone CA, Hamady M et al (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788. doi:10.1038/nrmicro1978

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hill MJ (1997) Intestinal flora and endogenous vitamin synthesis. Eur J Cancer Prev 6:43–45

    Article  Google Scholar 

  4. Macpherson AJ, Harris NL (2004) Interactions between commensal intestinal bacteria and the immune system. Nat Rev Immunol 4:478–485. doi:10.1038/nri1373

    Article  CAS  PubMed  Google Scholar 

  5. Umesaki Y, Setoyama H, Matsumoto S (1999) Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect Immun 67:3504

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Dillon RJ, Vennard CT, Buckling A, Charnley AK (2005) Diversity of locust gut bacteria protects against pathogen invasion. Ecol Lett 8:1291–1298. doi:10.1111/j.1461-0248.2005.00828.x

    Article  Google Scholar 

  7. Fons M, Gomez A, Karjalainen T (2000) Mechanisms of colonisation and colonisation resistance of the digestive tract part 2: bacteria/bacteria interactions. Microb Ecol Health Dis 2:240–246. doi:10.1080/089106000750060495

    Google Scholar 

  8. Barbieri E, Paster BJ, Hughes D et al (2001) Phylogenetic characterization of epibiotic bacteria in the accessory nidamental gland and egg capsules of the squid Loligo pealei (Cephalopoda:Loliginidae). Environ Microbiol 3:151–167

    Article  CAS  PubMed  Google Scholar 

  9. Currie CR, Poulsen M, Mendenhall J et al (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science 311(80):81–83. doi:10.1126/science.1119744

    Article  CAS  PubMed  Google Scholar 

  10. Moran NA (2006) Symbiosis. Curr Biol 16:866–871. doi:10.1016/j.cub.2006.09.019

    Article  Google Scholar 

  11. Lindquist N, Barber PH, Weisz JB (2005) Episymbiotic microbes as food and defence for marine isopods: unique symbioses in a hostile environment. Proc R Soc B 272:1209–1216. doi:10.1098/rspb.2005.3082

    Article  PubMed Central  PubMed  Google Scholar 

  12. Gil-Turnes MS, Hay ME, Fenical W (1989) Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116–118. doi:10.1126/science.2781297

    Article  CAS  PubMed  Google Scholar 

  13. Gil-Turnes MS, Fenical W (1992) Embryos of Homarus americanus are protected by epibiotic bacteria. Biol Bull 182:105–108. doi:10.2307/1542184

    Article  Google Scholar 

  14. Currie CR, Scott JA, Summerbell RC (1999) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–705

    Article  CAS  Google Scholar 

  15. Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A 100:1803–1807. doi:10.1073/pnas.0335320100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Banning JL, Weddle AL, Wahl GW et al (2008) Antifungal skin bacteria, embryonic survival, and communal nesting in four-toed salamanders, Hemidactylium scutatum. Oecologia 156:423–429. doi:10.1007/s00442-008-1002-5

    Article  PubMed  Google Scholar 

  17. Martín-Vivaldi M, Soler JJ, Peralta-Sánchez JM et al (2014) Special structures of hoopoe eggshells enhance the adhesion of symbiont-carrying uropygial secretion that increase hatching success. J Anim Ecol 83:1289–1301. doi:10.1111/1365-2656.12243

    Article  PubMed  Google Scholar 

  18. Soler JJ, Martín-Vivaldi M, Ruiz-Rodríguez M et al (2008) Symbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland. Funct Ecol 22:864–871. doi:10.1111/j.1365-2435.2008.01448.x

    Article  Google Scholar 

  19. Martín-Platero AM, Valdivia E, Ruiz-Rodríguez M et al (2006) Characterization of antimicrobial substances produced by Enterococcus faecalis MRR 10–3, isolated from the uropygial gland of the hoopoe (Upupa epops). Appl Environ Microbiol 72:4245–4249. doi:10.1128/AEM.02940-05

    Article  PubMed Central  PubMed  Google Scholar 

  20. Law-Brown J, Meyers PR (2003) Enterococcus phoeniculicola sp. nov., a novel member of the enterococci isolated from the uropygial gland of the Red-billed Woodhoopoe, Phoeniculus purpureus. Int J Syst Evol Microbiol 53:683–685. doi:10.1099/ijs.0.02334-0

    Article  CAS  PubMed  Google Scholar 

  21. Mayr G (2007) Avian higher-level phylogeny: well-supported clades and what we can learn from a phylogenetic analysis of 2954 morphological characters. J Zool Syst Evol Res 46:63–72. doi:10.1111/j.1439-0469.2007.00433.x

    Google Scholar 

  22. Martín-Vivaldi M, Ruiz-Rodríguez M, Soler JJ et al (2009) Seasonal, sexual and developmental differences in hoopoe Upupa epops preen gland morphology and secretions: evidence for a role of bacteria. J Avian Biol 40:191–205. doi:10.1111/j.1600-048X.2009.04393.x

    Article  Google Scholar 

  23. Soler JJ, Martín-Vivaldi M, Peralta-Sánchez JM et al (2014) Hoopoes color their eggs with antimicrobial uropygial secretions. Naturwissenschaften 101:697–705. doi:10.1007/s00114-014-1201-3

    Article  CAS  PubMed  Google Scholar 

  24. Jacob J, Ziswisler V (1982) The uropygial gland. Avian Biol 6:199–314

    Article  Google Scholar 

  25. Reneerkens J, Piersma T, Sinninghe Damsté JS (2002) Sandpipers (Scolopacidae) switch from monoester to diester preen waxes during courtship and incubation, but why? Proc R Soc Lond B 269:2135–2139. doi:10.1098/rspb.2002.2132

    Article  Google Scholar 

  26. Delhey K, Peters A, Kempenaers B (2007) Cosmetic coloration in birds: occurrence, function, and evolution. Am Nat 169:145–158. doi:10.1086/510095

    Article  Google Scholar 

  27. Delhey K, Peters A, Biedermann PHW, Kempenaers B (2008) Optical properties of the uropygial gland secretion: no evidence for UV cosmetics in birds. Naturwissenschaften 95:939–946. doi:10.1007/s00114-008-0406-8

    Article  CAS  PubMed  Google Scholar 

  28. Lopez-Rull I, Pagan I, Macias Garcia C (2010) Cosmetic enhancement of signal coloration: experimental evidence in the house finch. Behav Ecol 21:781–787. doi:10.1093/beheco/arq053

    Article  Google Scholar 

  29. Ruiz-Rodríguez M, Valdivia E, Soler JJ et al (2009) Symbiotic bacteria living in the hoopoe’s uropygial gland prevent feather degradation. J Exp Biol 212:3621–3626. doi:10.1242/jeb.031336

    Article  PubMed  Google Scholar 

  30. Ruiz-Rodríguez M, Soler JJ, Martín-Vivaldi M et al (2014) Environmental factors shape the community of symbionts in the hoopoe uropygial gland more than genetic factors. Appl Environ Microbiol 80:6714–6723. doi:10.1128/AEM.02242-14

    Article  PubMed Central  PubMed  Google Scholar 

  31. Sepehri S, Kotlowski R, Bernstein CN, Krause DO (2007) Microbial diversity of inflamed and noninflamed gut biopsy tissues in inflammatory bowel disease. Inflamm Bowel Dis 13:675–683. doi:10.1002/ibd.20101

    Article  PubMed  Google Scholar 

  32. Welkie DG, Stevenson DM, Weimer PJ (2010) ARISA analysis of ruminal bacterial community dynamics in lactating dairy cows during the feeding cycle. Anaerobe 16:94–100. doi:10.1016/j.anaerobe.2009.07.002

    Article  CAS  PubMed  Google Scholar 

  33. Porporato EMD, Lo Giudice A, Michaud L et al (2013) Diversity and antibacterial activity of the bacterial communities associated with two Mediterranean sea pens, Pennatula phosphorea and Pteroeides spinosum (Anthozoa: Octocorallia). Microb Ecol 66:701–714. doi:10.1007/s00248-013-0260-x

    Article  CAS  PubMed  Google Scholar 

  34. Schöttner S, Hoffmann F, Wild C et al (2009) Inter- and intra-habitat bacterial diversity associated with cold-water corals. ISME J 3:756–759. doi:10.1038/ismej.2009.15

    Article  PubMed  Google Scholar 

  35. Barbaro L, Couzi L, Bretagnolle V et al (2008) Multi-scale habitat selection and foraging ecology of the eurasian hoopoe (Upupa epops) in pine plantations. Biodivers Conserv 17:1073–1087

    Article  Google Scholar 

  36. Rehsteiner U (1996) Abundance and habitat requirements of the Hoopoe Upupa epops in Extremadura (Spain). Ornithol Beobachter 93:277–287

    Google Scholar 

  37. Schaub M, Martinez N, Tagmann-Ioset A et al (2010) Patches of bare ground as a staple commodity for declining ground-foraging insectivorous farmland birds. PLoS One 5, e13115. doi:10.1371/journal.pone.0013115

    Article  PubMed Central  PubMed  Google Scholar 

  38. Martín-Vivaldi M, Palomino JJ, Soler M, Soler JJ (1999) Determinants of reproductive success in the Hoopoe Upupa epops, a hole-nesting non-passerine bird with asynchronous hatching. Bird Study 46:205–216. doi:10.1080/00063659909461132

    Article  Google Scholar 

  39. Bussman J (1950) Zur brutbiologie des wiedehopfes. Ornithol Beobachter 47:141–151

    Google Scholar 

  40. Gupta RC, Ahmad I (1993) On the clutch size, egg laying schedule, hatching patterns and stay of nestlings of Indian Hoopoe (Upupa epops). Geobios 20:148–150

    Google Scholar 

  41. Cramp S (1998) The complete birds of the Western Palearctic on CD-ROM Software Optimedia. Oxford University Press, Oxford

    Google Scholar 

  42. Martín-Platero AM, Peralta-Sánchez JM, Soler JJ, Martínez-Bueno M (2010) Chelex-based DNA isolation procedure for the identification of microbial communities of eggshell surfaces. Anal Biochem 397:253–255. doi:10.1016/j.ab.2009.10.041

    Article  PubMed  Google Scholar 

  43. Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65:4630–4636

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Danovaro R, Luna GM, Dell’Anno A, Pietrangeli B (2006) Comparison of two fingerprinting techniques, terminal restriction fragment length polymorphism and automated ribosomal intergenic spacer analysis, for determination of bacterial diversity in aquatic environments. Appl Environ Microbiol 72:5982–5989. doi:10.1128/AEM.01361-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Cardinale M, Brusetti L, Quatrini P et al (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70:6147. doi:10.1128/AEM.70.10.6147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Ramette A (2009) Quantitative community fingerprinting methods for estimating the abundance of operational taxonomic units in natural microbial communities. Appl Environ Microbiol 75:2495–2505. doi:10.1128/AEM.02409-08

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Bent SJ, Forney LJ (2008) The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. ISME J 2:689–695. doi:10.1038/ismej.2008.44

    Article  CAS  PubMed  Google Scholar 

  48. Loisel P, Harmand J, Zemb O et al (2006) Denaturing gradient electrophoresis (DGE) and single-strand conformation polymorphism (SSCP) molecular fingerprintings revisited by simulation and used as a tool to measure microbial diversity. Environ Microbiol 8:720–731. doi:10.1111/j.1462-2920.2005.00950.x

    Article  CAS  PubMed  Google Scholar 

  49. StatSoft I (2006) STATISTICA (data analysis software system). Version 8. www.statsoft.com

  50. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4 9pp

  51. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  52. Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, URL http://www.R-project.org/

  53. Cook MI, Beissinger SR, Toranzos GA, Arendt WJ (2005) Incubation reduces microbial growth on eggshells and the opportunity for trans-shell infection. Ecol Lett 8:532–537. doi:10.1111/j.1461-0248.2005.00748.x

    Article  PubMed  Google Scholar 

  54. Soler JJ, Martín-Vivaldi M, Peralta-Sánchez JM, Ruiz-Rodríguez M (2010) Antibiotic-producing bacteria as a possible defence of birds against pathogenic microorganisms. Open Ornithol J 3:93–100

    Article  Google Scholar 

  55. Soler JJ, Peralta-Sánchez JM, Martín-Platero AM et al (2012) The evolution of size of the uropygial gland: mutualistic feather mites and uropygial secretion reduce bacterial loads of eggshells and hatching failures of European birds. J Evol Biol 25:1779–1791. doi:10.1111/j.1420-9101.2012.02561.x

    Article  CAS  PubMed  Google Scholar 

  56. Møller AP, Erritzøe J, Tøttrup Nielsen J (2010) Predators and microorganisms of prey: goshawks prefer prey with small uropygial glands. Funct Ecol 24:608–613. doi:10.1111/j.1365-2435.2009.01671.x

    Article  Google Scholar 

  57. Giraudeau M, Czirják GÁ, Duval C et al (2014) An experimental test in Mallards (Anas platyrhynchos) of the effect of incubation and maternal preen oil on eggshell microbial load. J Ornithol 155:671–677. doi:10.1007/s10336-014-1050-z

    Article  Google Scholar 

  58. Ding T, Schloss PD (2014) Dynamics and associations of microbial community types across the human body. Nature 509:359. doi:10.1038/nature13178

    Google Scholar 

  59. Guerrero-Ferreira R, Gorman C, Chavez AA et al (2013) Characterization of the bacterial diversity in Indo-West Pacific loliginid and sepiolid squid light organs. Microb Ecol 65:214–226. doi:10.1007/s00248-012-0099-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Hulcr J, Latimer AM, Henley JB et al (2012) A jungle in there: bacteria in belly buttons are highly diverse, but predictable. PLoS One 7, e47712. doi:10.1371/journal.pone.0047712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Roggenbuck M, Bærholm Schnell I, Blom N et al (2014) The microbiome of New World vultures. Nat Commun 5:5498. doi:10.1038/ncomms6498

    Article  CAS  PubMed  Google Scholar 

  62. Soler JJ, Pérez-Contreras T, De Neve L et al (2014) Recognizing odd smells and ejection of brood parasitic eggs. An experimental test in magpies of a novel defensive trait against brood parasitism. J Evol Biol 27:1265–1270. doi:10.1111/jeb.12377

    Article  CAS  PubMed  Google Scholar 

  63. Martín-Vivaldi M, Peña A, Peralta-Sánchez JM et al (2010) Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proc R Soc B 277:123–130. doi:10.1098/rspb.2009.1377

    Article  PubMed Central  PubMed  Google Scholar 

  64. Sparks NHC (1994) Shell accessory materials: structure and function. In: Board RG, Fuller R (eds) Microbiology of the avian egg. Chapman & Hall, London, pp 25–42

    Chapter  Google Scholar 

  65. Wellman-Labadie O, Picman J, Hincke MT (2008) Antimicrobial activity of the Anseriform outer eggshell and cuticle. Comp Biochem Physiol 149:640–649. doi:10.1016/j.cbpb.2008.01.001

    Article  Google Scholar 

  66. Brandl HB, van Dongen WFD, Darolová A et al (2014) Composition of bacterial assemblages in different components of reed warbler nests and a possible role of egg incubation in pathogen regulation. PLoS One 9, e114861. doi:10.1371/journal.pone.0114861

    Article  PubMed Central  PubMed  Google Scholar 

  67. Lee WY, Kim M, Jablonski PG et al (2014) Effect of incubation on bacterial communities of eggshells in a temperate bird, the Eurasian Magpie (Pica pica). PLoS One 9, e103959. doi:10.1371/journal.pone.0103959

    Article  PubMed Central  PubMed  Google Scholar 

  68. Shawkey MD, Firestone MK, Brodie EL, Beissinger SR (2009) Avian incubation inhibits growth and diversification of bacterial assemblages on eggs. PLoS One 4, e4522. doi:10.1371/journal.pone.0004522

    Article  PubMed Central  PubMed  Google Scholar 

  69. Ruiz-Rodríguez M, Martínez-Bueno M, Martín-Vivaldi M et al (2013) Bacteriocins with a broader antimicrobial spectrum prevail in enterococcal symbionts isolated from the hoopoe’s uropygial gland. FEMS Microbiol Ecol 85:495–502. doi:10.1111/1574-6941.12138

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Estefanía López Hernández and Olga Corona Forero for the help in laboratory work and Ana Belén García, Jonathan Romero Masegosa, Manuel Soto Cárdenas, Magdalena Ruiz-Rodríguez, and Jorge Doña Reguera for the help in caring of captive hoopoes. Laura Arco, Emilio Pagani, Juan Manuel Peralta-Sánchez, and Tomás Perez Contreras helped with the field work. The manuscript benefits from comments on a previous version by Juan Manuel Peralta-Sánchez and Magdalena Ruiz-Rodríguez. Support by funding was provided by Spanish Ministerio de Economía y Competitividad, European funds (FEDER) (CGL2013-48193-C3-1-P, CGL2013-48193-C3-3-P) and Junta de Andalucía (P09-RNM-4557). AM-G had a predoctoral grant from the Junta de Andalucía (P09-RNM-4557).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángela Martínez-García.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1

Relationships of OTU co-occurrence between pairs of sampled sites (UO vs. B, B vs. BP, BP vs. E, B vs. E, UO vs. E, UO vs. BP) within females, being UO (uropygial oil), B (beak), BP (brood patch) and E (eggshells). The p-values obtained by means of Log-linear analyses were corrected for multiple tests by using FDR methodology. Three of 27 frequent OTUs (139 bp, 171 bp, 219 bp) were specific of uropygial oil (UO) and were not used for this analysis. N represents the number of females in which each OTU was detected in the two sampled sites compared (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez-García, Á., Soler, J.J., Rodríguez-Ruano, S.M. et al. Preening as a Vehicle for Key Bacteria in Hoopoes. Microb Ecol 70, 1024–1033 (2015). https://doi.org/10.1007/s00248-015-0636-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0636-1

Keywords

Navigation