Advertisement

Microbial Ecology

, Volume 70, Issue 4, pp 936–947 | Cite as

Pyrosequencing-Based Assessment of the Microbial Community Structure of Pastoruri Glacier Area (Huascarán National Park, Perú), a Natural Extreme Acidic Environment

  • Elena González-Toril
  • Esther Santofimia
  • Yolanda Blanco
  • Enrique López-Pamo
  • Manuel J. Gómez
  • Miguel Bobadilla
  • Rolando Cruz
  • Edwin Julio Palomino
  • Ángeles AguileraEmail author
Environmental Microbiology

Abstract

The exposure of fresh sulfide-rich lithologies by the retracement of the Nevado Pastoruri glacier (Central Andes, Perú) is increasing the presence of heavy metals in the water as well as decreasing the pH, producing an acid rock drainage (ARD) process in the area. We describe the microbial communities of an extreme ARD site in Huascarán National Park as well as their correlation with the water physicochemistry. Microbial biodiversity was analyzed by FLX 454 sequencing of the 16S rRNA gene. The suggested geomicrobiological model of the area distinguishes three different zones. The proglacial zone is located in the upper part of the valley, where the ARD process is not evident yet. Most of the OTUs detected in this area were related to sequences associated with cold environments (i.e., psychrotolerant species of Cyanobacteria or Bacteroidetes). After the proglacial area, an ARD-influenced zone appeared, characterized by the presence of phylotypes related to acidophiles (Acidiphilium) as well as other species related to acidic and cold environments (i.e., acidophilic species of Chloroflexi, Clostridium and Verrumicrobia). Sulfur- and iron-oxidizing acidophilic bacteria (Acidithiobacillus) were also identified. The post-ARD area was characterized by the presence of OTUs related to microorganisms detected in soils, permafrost, high mountain environments, and deglaciation areas (Sphingomonadales, Caulobacter or Comamonadaceae).

Keywords

Acid rock drainage Acidophiles Extreme environments Massive sequencing Extremophiles 

Notes

Acknowledgments

We would like to thank the staff from Huaraz National Park for the sampling permits and support during the field trip. MB was supported by a FINCyT-Science and Technology Program Grant 117-2009-FINCyT-BDE, Presidency of the Council of Ministers of Peru. The authors wish to thank also Mª Paz Martín Redondo (Centro de Astrobiología) for the TXRF and ICP-MS analysis. The work has been supported by the Spanish Science and Innovation Grant CGL2011-22540.

Supplementary material

248_2015_634_MOESM1_ESM.docx (7.8 mb)
ESM 1 (DOCX 7936 kb)

References

  1. 1.
    Kaser G (1999) A review of the modern fluctuations of tropical glaciers. Glob Planet Chang 22(1–4):93–103CrossRefGoogle Scholar
  2. 2.
    Coudrain A, Francou B, Kundzewicz ZW (2005) Glacier shrinkage in the Andes and consequences for water resources—editorial. Hydrol Sci J 50(6):925–932Google Scholar
  3. 3.
    Mark BG, Seltzer GO (2005) Deglaciation in the Peruvian Andes: climatic forcing, hydrologic impact and comparative rates over time. In: Huber U, Bugmann HKM, Reasoner MA (eds) Global change and mountain regions: an overview of current knowledge, Springer, Dordrecht, vol. 23, pp 205–214Google Scholar
  4. 4.
    Mark BG, McKenzie JM, Gomez J (2005) Hydrochemical evaluation of changing glacier meltwater contribution to stream discharge: Callejon de Huaylas, Peru. Hydrol Sci J 50(6):975–987Google Scholar
  5. 5.
    Mark BG, McKenzie JM (2007) Tracing increasing tropical Andean glacier melt with stable isotopes in water. Environ Sci Technol 41(20):6955–6960CrossRefPubMedGoogle Scholar
  6. 6.
    Spang E (2006) Alpine lakes and glaciers in Peru: managing sources of water and destruction. Research sponsored by Tufts Institute of the Environment research GrantGoogle Scholar
  7. 7.
    Vuille M, Francou B, Wagnon P, Juen I, Kaser G, Mark BG, Bradley RS (2008) Climate change and tropical Andean glaciers: past, present and future. Earth-Sci Rev 89(3):79–96CrossRefGoogle Scholar
  8. 8.
    Wilson JJ, Reyes L, Garayer J (1967) Geology of the Mollembamba, Tayamba, Huaylas, and Pomabama Quadrangle, for Caruaz and Hauri, Lima. Survey, B.G. (Ed.) (in Spanish)Google Scholar
  9. 9.
    Nordstrom DK, Southam G (1997) Geomicrobiology of sulphide mineral oxidation. In: Banfield JF, Nealson KH (eds) Geomicrobiology: interactions between microbes and minerals, vol 35, Mineralogical Society of America, Washington DC, pp 361–390Google Scholar
  10. 10.
    Grande JA, Beltrán R, Sáinz A, Santos JC, de la Torre ML, Borrego J (2005) Acid mine drainage and acid rock drainage processes in the environment of Herrerías mine (Iberian pyrite belt, Huelva-Spain) and impact on the Andevalo dum. Environ Geol 47(1):185–196CrossRefGoogle Scholar
  11. 11.
    Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154(7):466–473CrossRefPubMedGoogle Scholar
  12. 12.
    Aliaga ED, Palomino EJ, Yupanqui E, Salvador ML, Bobadilla MC, Hilden F, López MN (2009) Capacidad de las plantas nativas en ambientes con drenaje ácido para la bioacumulación de metales pesados. Aporte Santiaguino 2(1):9–20Google Scholar
  13. 13.
    Alakangas L, Andersson E, Mueller S (2013) Neutralization/prevention of acid rock drainage using mixtures of alkaline by-products and sulfidic mine wastes. Environ Sci Pollut Res 20(11):7907–7916CrossRefGoogle Scholar
  14. 14.
    Gonzalez-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto river. Appl Environ Microbiol 69(8):4853–4865PubMedCentralCrossRefPubMedGoogle Scholar
  15. 15.
    Ehrlich HL (1996) Geomicrobiology, 3rd edn. Marcel Dekker, New York, 267 ppGoogle Scholar
  16. 16.
    Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits, part A: processes, techniques, and health issues. The Society of Economic Geologists, Littleton, pp 133–160Google Scholar
  17. 17.
    Johnson DB (1998) Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol Ecol 27:307–317CrossRefGoogle Scholar
  18. 18.
    Palomino E, Paredes M, Villanueva A (2005) Biorremediación de DAM mediante sistema de humedales. IV Congreso Internacional de Medio Ambiente en Minería y Metalurgia, LimaGoogle Scholar
  19. 19.
    Burns PJ (2011) A multi-parameter hydrochemical characterization of proglacial runoff, Cordillera Blanca, Perú. Cryosphere Discuss 5:2483–2521CrossRefGoogle Scholar
  20. 20.
    Fortner SK, Mark BG, McKenzie JM, Bury J, Trierweiler A, Baraer M, Burns PJ, Munk LA (2011) Elevated stream trace and minor element concentrations in the foreland of receding tropical glaciers. Appl Geochem 26(11):1792–1801CrossRefGoogle Scholar
  21. 21.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS ONE 6:e27310PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    De Santis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072CrossRefGoogle Scholar
  24. 24.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):D590–D596PubMedCentralCrossRefPubMedGoogle Scholar
  25. 25.
    Huse SM, Welch DM, Morrison HG, Sogin ML (2010) Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12(7):1889–1898PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefPubMedGoogle Scholar
  28. 28.
    Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37(suppl 1):D141–D145PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Braak CJF, Smilauer P (2002) CANOCO reference manual and CanoDraw for Window’s user’s guide: software for canonical community ordination (version 4.5). Ithaca: Microcomputer Power.Google Scholar
  30. 30.
    Cobbing J, Sánchez A, Martínez W, Zárate H (1996) Geología de los cuadrángulos de Huaraz, Recuay, La Unión, Chiquian y Yanahuanca. Hojas: 20-h, 20-i, 20-j, 21-i, 21-j. INGEMMET, PerúGoogle Scholar
  31. 31.
    Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modelling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121CrossRefGoogle Scholar
  32. 32.
    Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers CN, Jambor DK, Nordstrom DK (eds) Sulfate minerals. Reviews in mineralogy & geochemistry, vol. 40, Mineralogical Society of America, Geochemical Society, pp 351–403Google Scholar
  33. 33.
    Rai PK (2008) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytoremediation 102:131–158Google Scholar
  34. 34.
    Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2006) Microbial community succession in an unvegetated recently deglaciated soil. Microb Ecol 53(1):110–122CrossRefPubMedGoogle Scholar
  35. 35.
    Wood SA, Rueckert A, Cowan DA, Cary SC (2008) Sources of edaphic cyanobacterial diversity in the dry valleys of eastern Antarctica. ISME J 2(3):308–320CrossRefPubMedGoogle Scholar
  36. 36.
    Simon C, Wiezer A, Strittmatter AW, Daniel R (2009) Phylogenetic diversity and metabolic potential revealed in a glacier ice metagenome. Appl Environ Microbiol 75(23):7519–7526PubMedCentralCrossRefPubMedGoogle Scholar
  37. 37.
    Bartrons M, Catalan J, Casamayor EO (2012) High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes. Microb Ecol 64(4):860–869CrossRefPubMedGoogle Scholar
  38. 38.
    Tang C, Madigan MT, Lanoil B (2013) Bacterial and archaeal diversity in sediments of west lake Bonney, McMurdo dry valleys, Antarctica. Appl Environ Microbiol 79(3):1034–1038PubMedCentralCrossRefPubMedGoogle Scholar
  39. 39.
    Hallberg KB, González-Toril E, Johnson DB (2010) Acidithiobacillus ferrivorans, sp. nov.; facultatively anaerobic, psychrotolerant iron-, and sulfur-oxidizing acidophiles isolated from metal mine-impacted environments. Extremophiles 14(1):9–19CrossRefPubMedGoogle Scholar
  40. 40.
    Kimura S, Bryan CG, Hallberg KB, Johnson DB (2011) Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy. Environ Microbiol 13(8):2092–2104CrossRefPubMedGoogle Scholar
  41. 41.
    Dold B, Gonzalez-Toril E, Aguilera A, Lopez-Pamo E, Cisternas ME, Bucchi F, Amils R (2013) Acid rock drainage and rock weathering in Antarctica: important sources for iron cycling in the Southern Ocean. Environ Sci Technol 47(12):6129–6136PubMedGoogle Scholar
  42. 42.
    Johnson DB, Hallberg KB (2008) Carbon, iron and sulfur metabolism in acidophilic microorganisms. In: Poole RK (ed) Advances in microbial physiology, Academic Press, vol. 54, pp 201–255Google Scholar
  43. 43.
    Elberling B (2005) Temperature and oxygen control on pyrite oxidation in frozen mine tailings. Cold Reg Sci Technol 41:121–133CrossRefGoogle Scholar
  44. 44.
    Sattley WM, Madigan MT (2006) Isolation, characterization, and ecology of cold-active, chemolithotrophic, sulfur-oxidizing bacteria from perennially ice-covered Lake Fryxell, Antarctica. Appl Environ Microbiol 72(8):5562–5568PubMedCentralCrossRefPubMedGoogle Scholar
  45. 45.
    Gonzalez-Toril E, Aguilera A, Souza-Egipsy V, Lopez-Pamo E, Sanchez-España J, Amils R (2011) Geomicrobiology of an acid mine effluent, La Zarza-Perrunal (Iberian Pyritic Belt, Spain). Appl Environ Microbiol 77:2685–2694PubMedCentralCrossRefPubMedGoogle Scholar
  46. 46.
    Huang L, Zhou W, Hallberg KB, Wan C, Li J, Shu W (2011) Spatial and temporal analysis of the microbial community in the tailings of a Pb–Zn mine generating acidic drainage. Appl Environ Microbiol 77:5540–5544PubMedCentralCrossRefPubMedGoogle Scholar
  47. 47.
    Pradhan S, Srinivas TN, Pindi PK, Kishore KH, Begum Z, Singh PK, Singh AK, Pratibha MS, Yasala AK, Reddy GS, Shivaji S (2010) Bacterial biodiversity from Roopkund Glacier, Himalayan mountain ranges, India. Extremophiles 14(4):377–395CrossRefPubMedGoogle Scholar
  48. 48.
    Segawa T, Takeuchi N, Ushida K, Kanda H, Kohshima S (2010) Altitudinal changes in a bacterial community on Gulkana Glacier in Alaska. Microbes Environ 25(3):171–182CrossRefPubMedGoogle Scholar
  49. 49.
    Srinivas TN, Singh SM, Pradhan S, Pratibha MS, Kishore KH, Singh AK, Begum Z, Prabagaran SR, Reddy GS, Shivaji S (2011) Comparison of bacterial diversity in proglacial soil from Kafni Glacier, Himalayan Mountain ranges, India, with the bacterial diversity of other glaciers in the world. Extremophiles 15(6):673–690CrossRefPubMedGoogle Scholar
  50. 50.
    Lu S, Chourey K, Reiche M, Nietzsche S, Shah MB, Neu TR, Hettich RL, Küsel K (2013) Insights into the structure and metabolic function of microbes that shape pelagic iron-rich aggregates (“iron snow”). Appl Environ Microbiol 79(14):4272–4281PubMedCentralCrossRefPubMedGoogle Scholar
  51. 51.
    Sattin SR, Cleveland CC, Hood E, Reed SC, King AJ, Schmidt SK, Robeson MS, Ascarrunz N, Nemergut DR (2009) Functional shifts in unvegetated, perhumid, recently-deglaciated soils do not correlate with shifts in soil bacterial community composition. J Microbiol 47(6):673–681CrossRefPubMedGoogle Scholar
  52. 52.
    Ziegler S, Waidner B, Itoh T, Schumann P, Spring S, Gescher J (2013) Metallibacterium scheffleri gen. nov., sp. nov., an alkalinizing gammaproteobacterium isolated from an acidic biofilm. Int J Syst Evol Microbiol 63(Pt 4):1499–1504CrossRefPubMedGoogle Scholar
  53. 53.
    Smith KS (1999) Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. In: Plumlee GS, Losdon MJ (eds) The environmental geochemistry of mineral deposits, part A: processes, techniques, and health issues. Society of Economic Geologists, Littleton, pp 161–182Google Scholar
  54. 54.
    Munk LA, Faure G, Pride D, Bigham JM (2002) Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake river, Summit county, Colorado. Appl Geochem 17:421–430CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Elena González-Toril
    • 1
  • Esther Santofimia
    • 2
  • Yolanda Blanco
    • 1
  • Enrique López-Pamo
    • 2
  • Manuel J. Gómez
    • 1
  • Miguel Bobadilla
    • 3
  • Rolando Cruz
    • 4
  • Edwin Julio Palomino
    • 4
  • Ángeles Aguilera
    • 1
    Email author
  1. 1.Centro de Astrobiología (INTA-CSIC)Instituto Nacional de Técnica AeroespacialMadridSpain
  2. 2.Instituto Geológico y Minero de EspañaMadridSpain
  3. 3.Departamento Académico de Ciencias Ambientales. Facultad de Recursos Naturales RenovablesUniversidad Nacional Agraria de la SelvaHuánucoPerú
  4. 4.Facultad de Ciencias AmbientalesUniversidad Nacional Santiago Antúnez de MayoloHuarazPerú

Personalised recommendations