Microbial Ecology

, Volume 76, Issue 1, pp 2–8 | Cite as

A Perspective on the Global Pandemic of Waterborne Disease

  • Timothy E FordEmail author
  • Steve Hamner
Short Commentary


Waterborne diseases continue to take a heavy toll on the global community, with developing nations, and particularly young children carrying most of the burden of morbidity and mortality. Starting with the historical context, this article explores some of the reasons why this burden continues today, despite our advances in public health over the past century or so. While molecular biology has revolutionized our abilities to define the ecosystems and etiologies of waterborne pathogens, control remains elusive. Lack of basic hygiene and sanitation, and failing infrastructure, remain two of the greatest challenges in the global fight against waterborne disease. Emerging risks continue to be the specter of multiple drug resistance and the ease with which determinants of virulence appear to be transmitted between strains of pathogens, both within and outside the human host.


Hygiene Sanitation Infrastructure Pathogens Biofilms Sequencing E. coli 


  1. 1.
    Brown FC. The cause and generation of cholera, Letter to the Editor, The Spectator, Page 13, 10 February 1849.
  2. 2.
    Ruxin JN (1994) Magic bullet: the history of oral rehydration therapy. Med Hist 389:363–397, PMCID: PMC1036912 Google Scholar
  3. 3.
    Sterndale RC (1881) Municipal work in India; or hints on sanitation-general conservancy and improvement in municipalities, towns, and villages. Thacker, Spink & Co., CalcuttaGoogle Scholar
  4. 4.
    Hamner S, Tripathi A, Mishra RK, Bouskill N, Broadaway S, Pyle B, Ford TE (2006) The role of water use patterns in incidence of water-borne/enteric diseases along the Ganges River in Varanasi, India. Int J Environ Health Res 16:113–132CrossRefPubMedGoogle Scholar
  5. 5.
    World Health Organization/UN-Water (2014) UN-water global analysis and assessment of sanitation and drinking-water (GLAAS) 2014 report: investing in water and sanitation: increasing access, reducing inequalities. ( Accessed Dec 2014)
  6. 6.
    Ford TE, Hamner S (2010) Control of water-borne pathogens in developing countries. In: Mitchell R, Gu J-D (eds) Environmental microbiology, 2nd edn. Wiley, HobokenGoogle Scholar
  7. 7.
    Ford TE, and Hamner S (2014) Water pollution. In: Landrigan PJ and Etzel R (eds) Textbook of Children’s Environmental Health. Oxford UniversityGoogle Scholar
  8. 8.
    Frauendorfer R, Liemberger R (2010) The issues and challenges of reducing non-revenue water. Asian Development Bank, Manila, Philippines, 43 pp.
  9. 9.
    Tortajada C, Biswas AK (2013) Improving water policy and governance. Routledge, New York, p 208CrossRefGoogle Scholar
  10. 10.
    National Research Council of Canada (2006) Drinking water distribution systems: Assessing and reducing risks. The National Academies Press, Washington, p 391Google Scholar
  11. 11.
    Colwell RR (2000) Viable but nonculturable bacteria: a survival strategy. J Infect Chemother 6:121–125CrossRefPubMedGoogle Scholar
  12. 12.
    Li L, Mendis N, Trigui H, Oliver JD, Faucher SP (2014) The importance of the viable but non-culturable state in human bacterial pathogens. Front Microbiol. doi: 10.3389/fmicb.2014.00258, PMCID: PMC4040921
  13. 13.
    Levin R, Epstein P, Ford TE, Harrington W, Olson E, Reichart E (2002) US drinking water challenges in the 21 st century. Environ Health Perspect 110:43–52, PMCID: PMC1241146 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ford TE, Hermon-Taylor J, Cangelosi G, Bartram J (2004) Approaches to risk management in priority settings. In: Pedley S, Bartram J, Rees G, Dufour A, Cotruvo J (eds) Pathogenic mycobacteria in water: A guide to public health consequences, monitoring and management. IWA Publishing; 169–178Google Scholar
  15. 15.
    Winston R (Ed). (2011) Uhlig’s Corrosion Handbook, 3rd Edition. Wiley. pp 1296Google Scholar
  16. 16.
    US EPA (2009) Drinking water infrastructure needs survey and assessment.
  17. 17.
    Cohen BR (2012) Fixing America’s crumbling underground water infrastructure competitive bidding offers a way out. Competitive Enterprise Institute.
  18. 18.
    PVC Pipe Association (2011). Accessed Dec 15, 2014
  19. 19.
    Latorre I, Hwang S, Sevillano M, Montalvo-Rodriguez R (2012) PVC biodeterioration and DEHP leaching by DEHP-degrading bacteria. Int Biodeterior Biodegrad 69:73–81. doi: 10.1016/j.ibiod.2011.12.011, PMCID: PMC3377483 CrossRefGoogle Scholar
  20. 20.
    Walter RK, Lin P-H, Edwards M, Richardson RE (2011) Investigation of factors affecting the accumulation of vinyl chloride in polyvinyl chloride piping used in drinking water distribution systems. Water Res 45:2607–2615CrossRefPubMedGoogle Scholar
  21. 21.
    US EPA (2012) Basic information about vinyl chloride in drinking water.
  22. 22. (2014) GDP per capita - Countries – List (accessed 1/11/2015)
  23. 23.
    Jadhav R (2012) Civic bodies fail to curb water losses. The Times of India.
  24. 24.
    Geier H, Mostowy S, Cangelosi GA, Behr MA, Ford TE (2008) Autoinducer-2 triggers the oxidative stress response in Mycobacterium avium leading to biofilm formation. Appl Environ Microbiol 74:1798–1804, PMCID: PMC2268301 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Kaplan JB (2010) Biofilm dispersal mechanisms, clinical implications, and potential therapeutic uses. J Dent Res 89:205–218. doi: 10.1177/0022034509359403, PMCID: PMC3318030 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    O’Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci U S A 110:17981–17986. doi: 10.1073/pnas.1316981110, PMCID: PMC3816427
  27. 27.
    van der Laan H, van Halem D, Smeets PW, Soppe AI, Kroesbergen J, Wubbels G, Nederstigt J, Gensburger I, Heijman SG (2014) Bacteria and virus removal effectiveness of ceramic pot filters with different silver applications in a long term experiment. Water Res 51:47–54. doi: 10.1016/j.watres.2013.11.010, Epub 2013 Dec 19 CrossRefPubMedGoogle Scholar
  28. 28.
    Seper A, Pressler K, Kariisa A, Haid AG, Roier S, Leitner DR, Reidl J, Tamayo R, Schild S (2014) Identification of genes induced in Vibrio cholerae in a dynamic biofilm system. Int J Med Microbiol 304:749–763. doi: 10.1016/j.ijmm.2014.05.011, PMCID: PMC4101255
  29. 29.
    Fierer N, Barberán A, Laughlin DC (2014) Seeing the forest for the genes: using metagenomics to infer the aggregated traits of microbial communities. Front Microbiol 5:614. doi: 10.3389/fmicb.2014.00614, PMCID: PMC4228856 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Schmeisser C, Stöckigt C, Raasch C, Wingender J, Timmis KN, Wenderoth DF, Flemming H-C, Liesegang H, Schmitz RA, Jaeger K-E, Streit WR (2003) Metagenome survey of biofilms in drinking-water networks. Appl Environ Microbiol 69:7298–7309, PMCID: PMC309957 Google Scholar
  31. 31.
    Hasan NA, Young BA, Minard-Smith AT, Saeed K, Li H, Heizer EM, McMillan NJ, Isom R, Abdullah AS, Bornman DM, Faith SA, Choi SY, Dickens ML, Cebula TA, Colwell RR. Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS ONE 9(5): e97699. doi: 10.1371/journal.pone.009769, PMCID: PMC4028220
  32. 32.
    Ford TE (1999) Microbiological safety of drinking water: United States and global perspectives. Environ Health Perspect 107(Suppl 1):191–206, PMCID: 1566363Ford CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ford TE, Colwell R (1996) A global decline in microbiological quality of water: A call for action. American Academy of Microbiology, Washington, p 40Google Scholar
  34. 34.
    World Health Organization (2014) Progress on drinking water and sanitation 2014 Update,
  35. 35.
    Freeman MC, Stocks ME, Cumming O, Jeandron A, Higgins JP, Wolf J, Prüss-Ustün A, Bonjour S, Hunter PR, Fewtrell L, Curtis V (2014) Hygiene and health: systematic review of handwashing practices worldwide and update of health effects. Trop Med Int Health 19:906–916Google Scholar
  36. 36.
    Aiello AE, Coulborn RM, Perez V, Larson EL (2008) Effect of hand hygiene on infectious disease risk in the community setting: a meta-analysis. Am J Public Health 98:1372–1381, PMCID: PMC2446461 Google Scholar
  37. 37.
    Kuehn BM (2014) FDA pushes makers of antimicrobial soap to prove safety and effectiveness. JAMA 311(3):234. doi: 10.1001/jama.2013.285971 CrossRefPubMedGoogle Scholar
  38. 38.
    Aiello AE, Larson EL, Levy SB (2007) Consumer antibacterial soaps: effective or just risky? Clin Infect Dis 45(Suppl 2):S137–S147CrossRefPubMedGoogle Scholar
  39. 39.
    Galiani S, Gertler P, Orsola-Vidal A (2012) Promoting handwashing behavior in Peru: The effect of large-scale mass-media and community level interventions. Policy Research Working Paper Series 6257, The World BankGoogle Scholar
  40. 40.
    Cummins C, Doyle JT, Kindness L, Lefthand MJ, Bear Don’t Walk UJ, Bends A, Broadaway SC, Camper AK, Fitch R, Ford TE, Hamner S, Morrison AR, Richards CL, Young SL, Eggers MJ (2010) Community-based participatory research in Indian Country: improving health through water quality research and awareness. Fam Community Health 33:166–174, PMCID: PMC3070444 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Riley LW, Remis RS, Helgerson SD, McGee HB, Wells JG, Davis BR, Hebert RJ et al (1983) Hemorrhagic colitis associated with a rare Escherichia coli serotype. N Engl J Med 308:681–685CrossRefPubMedGoogle Scholar
  42. 42.
    Manning SD, Motiwala AS, Springman AC, Qi W, Lacher DW, Ouellette LM et al (2008) Variation in virulence in clades of Escherichia coli O157:H7 associated with disease outbreaks. Proc Natl Acad Sci U S A 105:4868–4873, PMCID: PMC2290780 Google Scholar
  43. 43.
    Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL (2005) Epidemiology of Escherichia coli O157:H7 outbreaks, United States, 1982–2002. Emerg Infect Dis 11:603–609, PMCID: PMC3320345 Google Scholar
  44. 44.
    State and Local Health Departments, E. coli O157:H7 Investigation Team, CDC (2006) Ongoing multistate outbreak of escherichia coli serotype O157:H7 infections associated with consumption of Fresh Spinach --- United States, September 2006. MMWR September 26, 2006 / 55(Dispatch);1–2 (Accessed 1/11/2015)
  45. 45.
    Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M, Bernard H et al (2011) Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 in Germany. N Engl J Med 365:1771–1780CrossRefPubMedGoogle Scholar
  46. 46.
    Bae WK, Lee YK, Cho MS, Ma SK, Kim SW, Kim NH, Choi KC (2006) A case of hemolytic uremic syndrome caused by Escherichia coli O104:H4. Yonsei Med J 47:437–439, PMCID: PMC2688167 Google Scholar
  47. 47.
    Hamner S, Broadaway SC, Berg E, Stettner S, Pyle BH, Big Man N, Old Elk J et al (2013) Detection and source tracking of Escherichia coli, harboring intimin and Shiga toxin genes, isolated from the Little Bighorn River, Montana. Int J Environ Health Res. doi: 10.1080/09603123.2013.835030 PubMedCrossRefGoogle Scholar
  48. 48.
    Lagreid WW, Elder RO, Keen JE (1999) Prevalence of Escherichia coli O157:H7 in range beef calves at weaning. Epidemiol Infect 123:291–298, PMCID: PMC2810762 Google Scholar
  49. 49.
    Elder RO, Keen JE, Siragusa GR, Barkocy-Gallagher GA, Koohmaraie M, Laegreid WW (2000) Correlation of enterohemorrhagic Escherichia coli O157 prevalence in feces, hides, and carcasses of beef cattle during processing. Proc Natl Acad Sci U S A 97:2999–3003, PMCID: PMC16181 Google Scholar
  50. 50.
    Jeon SJ, Elzo M, DiLorenzo N, Lamb GC, Jeong KC (2013) Evaluation of animal genetic and physiological factors that affect the prevalence of Escherichia coli O157 in Cattle. PLoS ONE 8(2):e55728. doi: 10.1371/journal.pone.0055728, PMCID: PMC3566006
  51. 51.
    Casas V, Magbanua J, Sobrepeña G, Keley ST, Maloy SR (2010) Reservoir of bacterial exotoxin genes in the environment. Int J Microbiol, 2010:10. doi: 10.1155/2010/754368 Article ID 754368, PMCID: PMC3026987
  52. 52.
    Gennari M, Ghidini V, Caburlotto G, Lleo MM (2012) Virulence genes and pathogenicity islands in environmental Vibrio strains nonpathogenic to humans. FEMS Microbiol Ecol 82:563–573. doi: 10.1111/j.1574-6941.2012.01427.x CrossRefPubMedGoogle Scholar
  53. 53.
    Colwell RR, Kaper J, Joseph SW (1977) Vibrio cholera, Vibrio parahaemolyticus, and other vibrios: occurrence and distribution in Chesapeake Bay. Science 198:394–396CrossRefPubMedGoogle Scholar
  54. 54.
    Colwell RR (1996) Global climate and infectious disease: the cholera paradigm. Science 274:2025–2031CrossRefPubMedGoogle Scholar
  55. 55.
    Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62:1301–1314, PMCID: PMC98947 Google Scholar
  56. 56.
    Dolores J, Satchell KJF (2013) Analysis of Vibrio cholerae genomic sequences reveals unique rtxA variants in environmental strains and an rtxA-null mutation in recent El Tor isolates. MBio 4(2):e00624. doi: 10.1128/mBio.00624-12, PMCID: PMC3634609
  57. 57.
    Son MS, Megli CJ, Kovacikova G, Qadri F, Taylor RK (2011) Characterization of Vibrio cholerae O1 El Tor biotype variant clinical isolates from Bangladesh and Haiti, including a molecular genetic analysis of virulence genes. J Clin Microbiol 49:3739–3749, PMCID: PMC3209127 Google Scholar
  58. 58.
    Colwell RR (2014) Climate change, oceans, and infectious disease: Cholera pandemics as a model. Society for General Microbiology Annual Conference, April 2014. (accessed December 2014.)
  59. 59.
  60. 60.
  61. 61.
    Haftendorn H (2000) Water and international conflict. Third World Q 21:51–68CrossRefGoogle Scholar
  62. 62.
    Cunningham E (2014) Islamic State jihadists are using water as a weapon in Iraq. The Washington Post. October 7, 2014.

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Health ProfessionsShenandoah UniversityWinchesterUSA
  2. 2.Department of Microbiology and ImmunologyMontana State UniversityBozemanUSA

Personalised recommendations