Skip to main content
Log in

Lipid Biomarker and Isotopic Study of Community Distribution and Biomarker Preservation in a Laminated Microbial Mat from Shark Bay, Western Australia

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Modern microbial mats from Shark Bay present some structural similarities with ancient stromatolites; thus, the functionality of microbial communities and processes of diagenetic preservation of modern mats may provide an insight into ancient microbial assemblages and preservation. In this study, the vertical distribution of microbial communities was investigated in a well-laminated smooth mat from Shark Bay. Biolipid and compound-specific isotopic analyses were performed to investigate the distribution of microbial communities in four distinct layers of the mat. Biomarkers indicative of cyanobacteria were more abundant in the uppermost oxic layer. Diatom markers (e.g. C25 HBI alkene, C20:4ω6 and C20:5ω3 polar lipid fatty acids (PLFAs)) were also detected in high abundance in the uppermost layer, but also in the deepest layer under conditions of permanent darkness and anoxia, where they probably used NO3 for respiration. CycC19:0, an abundant PLFA of purple sulfur bacteria (PSB), was detected in all layers and presented the most 13C-depleted values of all PLFAs, consistent with photoautotrophic PSB. Sulfur-bound aliphatic and aromatic biomarkers were detected in all layers, highlighting the occurrence of early sulfurisation which may be an important mechanism in the sedimentary preservation of functional biolipids in living and, thus, also ancient mats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Walter MR, Buick R, Dunlop JSR (1980) Stromatolites 3,400–3,500 Myr old from the North Pole area, Western Australia. Nature 284:443–445

    Google Scholar 

  2. Hoffman HJ (2000) Archean stromatolites as microbial archives. In: Riding RE, Awramik SM (eds) Microbial sediments. Springer, Berlin, pp 315–327

    Google Scholar 

  3. Allwood AC, Walter MR, Kamber BS et al (2006) Stromatolite reef from the Early Archaean era of Australia. Nature 441:714–718

    CAS  PubMed  Google Scholar 

  4. Vankranendonk M, Philippot P, Lepot K et al (2008) Geological setting of Earth’s oldest fossils in the ca. 3.5 Ga Dresser Formation, Pilbara Craton, Western Australia. Precambrian Res 167:93–124

    CAS  Google Scholar 

  5. Semikhatov MA, Gebelein CD, Could P et al (1979) Stromatolite morphogenesis—progress and problems. Can J Earth Sci 16:992–1015

    Google Scholar 

  6. Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358

    CAS  PubMed  Google Scholar 

  7. Riding R (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology 47:179–214

    CAS  Google Scholar 

  8. Flannery DT, Walter MR (2011) Archean tufted microbial mats and the Great Oxidation Event: new insights into an ancient problem. Aust J Earth Sci 59:1–11

    Google Scholar 

  9. Van Gemerden H (1993) Microbial mats: a joint venture. Mar Geol 113:3–25

    Google Scholar 

  10. Pagès A, Grice K, Ertefai T et al (2014) Organic geochemical studies of modern microbial mats from Shark Bay: part I: influence of depth and salinity on lipid biomarkers and their isotopic signatures. Geobiology 12:469–487

    PubMed  Google Scholar 

  11. Pagès A, Grice K, Vacher M et al (2014) Characterizing microbial communities and processes in a modern stromatolite (Shark Bay) using lipid biomarkers and two-dimensional distributions of porewater solutes. Environ Microbiol 16:2458–2474

    PubMed  Google Scholar 

  12. Jørgensen BB, Des Marais DJ (1988) Optical properties of benthic photosynthetic fiber-optic studies of cyanobacterial mats communities. Limnol Oceanogr 33:99–113

    PubMed  Google Scholar 

  13. Frederiksen MS, Glud RN (2006) Oxygen dynamics in the rhizosphere of Zostera marina: a two-dimensional planar optode study. Limnol Oceanogr 51:1072–1083

    Google Scholar 

  14. Pagès A, Welsh DT, Robertson D et al (2012) Diurnal shifts in co-distributions of sulfide and iron(II) and profiles of phosphate and ammonium in the rhizosphere of Zostera capricorni. Estuar Coast Shelf Sci 115:282–290

    Google Scholar 

  15. Glud RN, Kuhl M, Kohls O, Ramsing NB (1999) Heterogeneity of oxygen production and consumption in a photosynthetic microbial mat as studied by planar optodes. J Phycol 279:270–279

    Google Scholar 

  16. De Wit R, Van Gemerden H (1988) Growth of the cyanobacterium Microcoleus chthonoplastes on sulfide. FEMS Microbiol Ecol 53:203–209

    Google Scholar 

  17. Jahnert R, de Paula O, Collins L et al (2012) Evolution of a coquina barrier in Shark Bay, Australia by GPR imaging: architecture of a Holocene reservoir analog. Sediment Geol 281:59–74

    CAS  Google Scholar 

  18. Jahnert R, Collins L (2013) Controls on microbial activity and tidal flat evolution in Shark Bay, Western Australia. Sedimentology 60:1071–1099

    Google Scholar 

  19. Burns BP, Goh F, Allen MA, Neilan BA (2004) Microbial diversity of extant stromatolites in the hypersaline marine environment of Shark Bay, Australia. Environ Microbiol 6:1096–1101

    CAS  PubMed  Google Scholar 

  20. Papineau D, Walker JJ, Mojzsis SJ, Pace NR (2005) Composition and structure of microbial communities from stromatolites of Hamelin Pool in Shark Bay, Western Australia. Appl Environ Microbiol 71:4822–4832

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Allen MA, Goh F, Burns BP, Neilan BA (2009) Bacterial, archaeal and eukaryotic diversity of smooth and pustular microbial mat communities in the hypersaline lagoon of Shark Bay. Geobiology 7:82–96

    CAS  PubMed  Google Scholar 

  22. Thiel V, Merz-preiβ M, Reitner J, Michaelis W (1997) Biomarker studies on microbial carbonates: extractable lipids of a calcifying cyanobacterial mat (Everglades, USA). Facies 36:163–172

    Google Scholar 

  23. Wieland A, Kühl M, McGowan L et al (2003) Microbial mats on the Orkney Islands revisited: microenvironment and microbial community composition. Microb Ecol 46:371–390

    CAS  PubMed  Google Scholar 

  24. Jahnke LL, Embaye T, Hope J et al (2004) Lipid biomarker and carbon isotopic signatures for stromatolite-forming, microbial mat communities and Phormidium cultures from Yellowstone National Park. Geobiology 2:31–47

    CAS  Google Scholar 

  25. Allen MA, Neilan BA, Burns BP et al (2010) Lipid biomarkers in Hamelin Pool microbial mats and stromatolites. Org Geochem 41:1207–1218

    CAS  Google Scholar 

  26. Logan BW (1974) Evolution and diagenesis of Quarternary carbonate sequences, Shark Bay, Western Australia. Am Assoc Petr Geol Mem 22:195–249

    CAS  Google Scholar 

  27. Edgcomb V, Bernhard J, Summons RE et al (2013) Active eukaryotes in microbialites from Highborne Cay, Bahamas, and Hamelin Pool (Shark Bay), Australia. ISME J 8:418–429

    PubMed Central  PubMed  Google Scholar 

  28. Edgcomb VP, Bernhard JM, Beaudoin D et al (2013) Molecular indicators of microbial diversity in oolitic sands of Highborne Cay, Bahamas. Geobiology 11:234–251

    CAS  PubMed  Google Scholar 

  29. Pages A, Welsh DT, Teasdale PR et al (2014) Diel fluctuations in solute distributions and biogeochemical cycling in a hypersaline microbial mat from Shark Bay, WA. Mar Chem 167:102–112

    CAS  Google Scholar 

  30. Jahnert R, Collins L (2011) Significance of subtidal microbial deposits in Shark Bay, Australia. Mar Geol 286:106–111

    Google Scholar 

  31. Nicholson J, Stolz JF, Pierson B (1987) Structure of a microbial mat at Great Sippewissett Marsh, Cape Cod, Massachusetts. FEMS Microbiol Ecol 45:343–364

    Google Scholar 

  32. Overmann J, van Gemerden H (2000) Microbial interactions involving sulfur bacteria: implications for the ecology and evolution of bacterial communities. FEMS Microbiol Rev 24:591–599

    CAS  PubMed  Google Scholar 

  33. Bobbie RJ, White DC (1980) Characterization of benthic microbial community structure by high-resolution gas chromatography of fatty acid methyl esters. Appl Environ Microbiol 39:1212–1222

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Zelles L, Bai QY, Rackwitz R et al (1995) Determination of phospholipid- and lipopolysaccharide-derived fatty acids as an estimate of microbial biomass and community structures in soils. Biol Fertil Soils 19:115–123

    CAS  Google Scholar 

  35. Adam P, Schmid JC, Mycke B et al (1993) Structural investigation of nonpolar sulfur cross-linked macromolecules in petroleum. Geochim Cosmochim Acta 57:3395–3419

    CAS  Google Scholar 

  36. Schaeffer P, Reiss C, Albrecht P (1995) Geochemical study of macromolecular organic matter from sulfur-rich sediments of evaporitic origin (Messinian of Sicily) by chemical degradations. Org Geochem 23:567–581

    CAS  Google Scholar 

  37. Wakeham SG, Sinninghe Damsté JS, Kohnen MEL, de Leeuw JW (1995) Organic sulfur compounds formed during early diagenesis in Black Sea sediments. Geochim Cosmochim Acta 59:521–533

    CAS  Google Scholar 

  38. Grice K, Schouten S, Nissenbaum A et al (1998) A remarkable paradox: sulfurised freshwater algal (Botryococcus braunii) lipids in an ancient hypersaline euxinic ecosystem. Org Geochem 28:195–216

    CAS  Google Scholar 

  39. Adam P, Schneckenburger P, Schaeffer P, Albrecht P (2000) Clues to early diagenetic sulfurization processes from mild chemical cleavage of labile sulfur-rich geomacromolecules. Geochim Cosmochim Acta 64:3485–3503

    CAS  Google Scholar 

  40. Hebting Y, Schaeffer P, Behrens A et al (2006) Biomarker evidence for a major preservation pathway of sedimentary organic carbon. Science 312:1627–1631

    CAS  PubMed  Google Scholar 

  41. Abrajano TA Jr, Murphy DE, Fang J et al (1994) 13C/12C ratios in individual fatty acids of marine mytilids with and without bacterial symbionts. Org Geochem 21:611–617

    CAS  Google Scholar 

  42. Peters KE, Walters CC, Moldowan JM (2005) The biomarker guide: biomarkers and isotopes in the environment and human history, vol 1. University Press, Cambridge

    Google Scholar 

  43. Dobson G, Ward DM, Robinson N, Eglinton G (1988) Biogeochemistry of hot spring environments: extractable lipids of a cyanobacterial mat. Chem Geol 68:155–179

    CAS  Google Scholar 

  44. Talbot HM, Summons RE, Jahnke LL et al (2008) Cyanobacterial bacteriohopanepolyol signatures from cultures and natural environmental settings. Org Geochem 39:232–263

    CAS  Google Scholar 

  45. Blumenberg M, Krüger M, Nauhaus K et al (2006) Biosynthesis of hopanoids by sulfate-reducing bacteria (genus Desulfovibrio). Environ Microbiol 8:1220–1227

    CAS  PubMed  Google Scholar 

  46. Summons RE, Jahnke LL, Roksandic Z (1994) Carbon isotopic fractionation in lipids from methanotrophic bacteria: relevance for interpretation of the geochemical record of biomarkers. Geochim Cosmochim Acta 58:2853–2863

    CAS  PubMed  Google Scholar 

  47. Cohen Z, Margheri MC, Tomaselli L (1995) Chemotaxonomy of cyanobacteria. Phytochemistry 40:1155–1158

    CAS  Google Scholar 

  48. Kenyon CN, Rippka R, Stanier RY (1972) Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch Mikrobiol 83:216–236

    CAS  PubMed  Google Scholar 

  49. Volkman JK, Jeffrey SW, Nichols PD et al (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    CAS  Google Scholar 

  50. Dunstan GA, Volkman JK, Barrett SM et al (1993) Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35:155–161

    Google Scholar 

  51. Taylor J, Parkes RJ (1985) Identifying different populations of sulphate-reducing bacteria within marine sediment systems, using fatty acid biomarkers. Microbiology 131:631–642

    CAS  Google Scholar 

  52. Boschker H, Middelburg J (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95

    CAS  PubMed  Google Scholar 

  53. Londry KL, Jahnke LL, Des Marais DJ (2004) Stable carbon isotope ratios of lipid biomarkers of sulfate-reducing bacteria. Appl Environ Microbiol 70:745–751

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Wilkinson SG (1988) Gram-negative bacteria. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 299–489

    Google Scholar 

  55. Alugupalli S, Portaels F, Larssoni L (1994) Systematic study of the 3-hydroxy fatty acid composition of Mycobacteria. J Bacteriol 176:2962–2969

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Winters K, Parker PL, Van Baalen C (1969) Hydrocarbons of blue-green algae: geochemical significance. Science 163:467–468

    CAS  PubMed  Google Scholar 

  57. Paoletti C, Pushparaj B, Florenzano G et al (1976) Unsaponifiable matter of green and blue-green algal lipids as a factor of biochemical differentiation of their biomasses: I. Total unsaponifiable and hydrocarbon fraction. Lipids 11:258–265

    CAS  Google Scholar 

  58. Robinson N, Eglinton G (1990) Lipid chemistry of Icelandic hot spring microbial mats. Org Geochem 15:291–298

    CAS  Google Scholar 

  59. Grimalt JO, de Wit R, Teixidor P, Albaigés J (1992) Lipid biogeochemistry of Phormidium and Microcoleus mats. Org Geochem 19:509–530

    CAS  Google Scholar 

  60. Fourçans A, de Oteyza TG, Wieland A et al (2004) Characterization of functional bacterial groups in a hypersaline microbial mat community (Salins-de-Giraud, Camargue, France). FEMS Microbiol Ecol 51:55–70

    PubMed  Google Scholar 

  61. Rontani J-F, Volkman JK (2005) Lipid characterization of coastal hypersaline cyanobacterial mats from the Camargue (France). Org Geochem 36:251–272

    CAS  Google Scholar 

  62. Freeman KH, Wakeham SG, Hayes JM (1994) Predictive isotopic biogeochemistry: hydrocarbons from anoxic marine basins. Org Geochem 21:629–644

    CAS  PubMed  Google Scholar 

  63. Mook WG, Bommerson JC, Staverman WH (1974) Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet Sci Lett 22:169–176

    CAS  Google Scholar 

  64. Volkman JK (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9:83–99

    CAS  Google Scholar 

  65. Volkman JK, Barrett SM, Blackburn SI et al (1998) Microalgal biomarkers: a review of recent research developments. Org Geochem 29:1163–1179

    CAS  Google Scholar 

  66. Dunlop RW, Jefferies PR (1985) Hydrocarbons of the hypersaline basins of Shark Bay, Western Australia. Org Geochem 8:313–320

    CAS  Google Scholar 

  67. Grossi V, Beker B, Geenevasen J et al (2004) C(25) highly branched isoprenoid alkenes from the marine benthic diatom Pleurosigma strigosum. Phytochemistry 65:3049–3055

    CAS  PubMed  Google Scholar 

  68. Summons R, Barrow R, Capon R et al (1993) The structure of a new C25 isoprenoid alkene biomarker from diatomaceous microbial communities. Aust J Chem 46:907–915

    CAS  Google Scholar 

  69. Bühring SI, Kamp A, Wörmer L et al (2014) Functional structure of laminated microbial sediments from a supratidal sandy beach of the German Wadden Sea (St. Peter-Ording). J Sea Res 85:463–473

    Google Scholar 

  70. Madigan MT, Jung DO (2008) An overview of purple bacteria: systematics, physiology, and habitats. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) Purple phototrophic bacteria. Springer, Dordrecht, pp 1–15

    Google Scholar 

  71. Quandt L, Gottschalk G, Ziegler H, Stichler W (1977) Isotope discrimination by photosynthetic bacteria. FEMS Microbiol Lett 1:125–128

    CAS  Google Scholar 

  72. Sirevag R, Buchanan B, Berry J, Troughton J (1977) Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Arch Microbiol 112:35–38

    CAS  PubMed  Google Scholar 

  73. Van der Meer M, Schouten S, Sinninghe-Damste J (1998) The effect of the reversed tricarboxylic acid cycle on the 13C contents of bacterial lipids. Org Geochem 28:527–533

    Google Scholar 

  74. Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1335

    CAS  PubMed  Google Scholar 

  75. Summons RE, Bird LR, Gillespie AL et al (2013) Lipid biomarkers in ooids from different locations and ages: evidence for a common bacterial flora. Geobiology 11:420–36

    CAS  PubMed  Google Scholar 

  76. Zhou Y, Grice K, Stuart-Williams H et al (2010) Biosynthetic origin of the saw-toothed profile in δ13C and δ2H of n-alkanes and systematic isotopic differences between n-, iso- and anteiso-alkanes in leaf waxes of land plants. Phytochemistry 71:388–403

    CAS  PubMed  Google Scholar 

  77. Attaway DH, Parker PL, Mears JA (1970) Normal alkanes of five coastal spermatophytes. Contrib Mar Sci 15:13–19

    CAS  Google Scholar 

  78. Botello AV, Mandelli EF (1978) Distribution of n-paraffins in seagrasses, benthic algae, oysters and recent sediments from Terminos Lagoon, Campeche, Mexico. Bull Environ Contam Toxicol 78:162–170

    Google Scholar 

  79. Walker DI, Kendrick GA, McComb AJ (1988) The distribution of seagrass species in Shark Bay, Western Australia, with notes on their ecology. Aquat Bot 30:305–317

    Google Scholar 

  80. Collister JW, Rieley G, Stern B et al (1994) Compound-specific δ13C analyses of leaf lipids from plants with different carbon dioxide metabolism. Org Geochem 21:619–627

    CAS  Google Scholar 

  81. Canuel EA, Freeman KH, Wakeham SG (1997) Isotopic compositions of lipid biomarker in estuarine compounds plants and surface sediments. Limnol Oceanogr 42:1570–1583

    CAS  Google Scholar 

  82. Des Marais DJ (2003) Biogeochemistry of hypersaline microbial mats illustrates the dynamics of modern microbial ecosystems and the early evolution of the biosphere. Biol Bull 204:160–167

    CAS  PubMed  Google Scholar 

  83. Kamp A, de Beer D, Nitsch JL et al (2011) Diatoms respire nitrate to survive dark and anoxic conditions. Proc Natl Acad Sci U S A 108:5649–5654

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Heisterkamp I, Kamp A, Schramm A et al (2012) Indirect control of the intracellular nitrate pool of intertidal sediment by the polychaete Hediste diversicolor. Mar Ecol Prog Ser 445:181–192

    Google Scholar 

  85. Dilling W, Cypionka H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71:123–127

    CAS  Google Scholar 

  86. Canfield DE, Des Marais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251:1471–1473

    CAS  PubMed  Google Scholar 

  87. Cohen Y (1984) Micro-sulfate reduction measurements at the H2S-O2 interface in organic rich sediments. Eos (Washington DC) 65:905

    Google Scholar 

  88. Hastings D, Emerson S (1988) Sulfate reduction in the presence of low oxygen levels in the water column of the Cariaco Trench. Limnol Oceanogr 33:391–396

    CAS  Google Scholar 

  89. Saas H, Cypionka H, Babenzien H-D (1997) Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic lake Stechlin. FEMS Microbiol Ecol 22:245–255

    Google Scholar 

  90. Krekeler D, Sigalevich P, Teske A et al (1997) A sulfate-reducing bacterium from the oxic layer of a microbial mat from Solar Lake (Sinai), Desulfovibrio oxyclinae sp. nov. Arch Microbiol 167:369–375

    CAS  Google Scholar 

  91. Krekeler D, Teske A, Cypionka H (1998) Strategies of sulfate-reducing bacteria to escape oxygen stress in a cyanobacterial mat. FEMS Microbiol Ecol 25:89–96

    CAS  Google Scholar 

  92. Minz D, Flax JL, Green SJ et al (1999) Diversity of sulfate-reducing bacteria in oxic and anoxic regions of a microbial mat characterized by comparative analysis of dissimilatory sulfite reductase genes. Appl Environ Microbiol 65:4666–4671

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Visscher P, Prins R, van Gemerden H (1992) Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiol Lett 86:283–294

    CAS  Google Scholar 

  94. Visscher PT, Dupraz C, Braissant O et al (2010) Biogeochemistry of carbon cycling in hypersaline mats: linking the present to the past through biosignatures. In: Seckbach J, Oren A (eds) Microbial mats: modern and ancient microorganisms in stratified systems, cellular origin, life in extreme habitats and astrobiology. Springer, Dordrecht, pp 443–468

    Google Scholar 

  95. Sinninghe Damsté JS, de Leeuw JW (1990) Analysis, structure and geochemical significance of organically-bound sulphur in the geosphere: state of the art and future research. Org Geochem 16:1077–1101

    Google Scholar 

  96. Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410:77–81

    CAS  PubMed  Google Scholar 

  97. Lepot K, Benzerara K, Brown GE, Philippot P (2008) Microbially influenced formation of 2,724-million-year-old stromatolites. Nat Geosci 1:118–121

    CAS  Google Scholar 

  98. Melendez I, Grice K, Schwark L (2013) Exceptional preservation of Palaeozoic steroids in a diagenetic continuum. Nat Sci Rep 3. doi: 10.1038/srep02768

  99. Lopez JF, de Oteyza TG, Teixidor P, Grimalt JO (2005) Long chain alkenones in hypersaline and marine coastal microbial mats. Org Geochem 36:861–872

    CAS  Google Scholar 

  100. Sandison CM, Alexander R, Kagi RI, Boreham CJ (2002) Sulfurisation of lipids in a marine-influenced lignite. Org Geochem 33:1053–1077

    CAS  Google Scholar 

  101. Innes HE, Bishop ANIMH, Farrimond P (1997) Preservation and diagenesis of hopanoids in recent lacustrine sediments of Priest Pot, England. Org Geochem 26:565–576

    CAS  Google Scholar 

  102. Dehmer J (1993) Petrology and organic geochemistry of peat samples from a raised bog in Kalimantan (Borneo). Org Geochem 20:349–362

    CAS  Google Scholar 

  103. Pancost RD, van Geel B, Baas M, Sinninghe Damsté JS (2000) δ13C values and radiocarbon dates of microbial biomarkers as tracers for carbon recycling in peat deposits. Geology 28:663–666

    CAS  Google Scholar 

  104. Thiel V, Blumenberg M, Pape T et al (2003) Unexpected occurrence of hopanoids at gas seeps in the Black Sea. Org Geochem 34:81–87

    CAS  Google Scholar 

  105. Filley TR, Freeman KH, Hatcher PG (1996) Carbon isotope relationships between sulfide-bound steroids and proposed functionalized lipid precursors in sediments from the Santa Barbara Basin, California. Org Geochem 25:367–377

    CAS  Google Scholar 

  106. Kok MD, Rijpstra WIC, Robertson L et al (2000) Early steroid sulfurisation in surface sediments of a permanently stratified lake. Geochim Cosmochim Acta 64:1425–1436

    CAS  Google Scholar 

  107. Behrens A, Schaeffer P, Bernasconi S, Albrecht P (2000) Mono- and bicyclic squalene derivatives as potential proxies for anaerobic photosynthesis in lacustrine sulfur-rich sediments. Geochim Cosmochim Acta 64:3327–3336

    CAS  Google Scholar 

  108. Summons RE, Powell TG (1986) Chlorobiaceae in Paleozoic seas revealed by biological markers, isotopes and geology. Nature 319:763–765

    CAS  Google Scholar 

  109. Kohl W, Achenbach H, Reichenbacht H (1983) The pigments of Brevibacterium unens: aromatic carotenoids. Phytochemistry 22:207–210

    CAS  Google Scholar 

  110. Mozingo R, Spencer C, Folers C (1944) Hydrogenation by raney nickel catalyst without gaseous hydrogen. J Am Chem Soc 66:1859–1860

    CAS  Google Scholar 

  111. Stolz JF, Botkin DB, Dastoor MN (1988) The integral biosphere. In: Rambler MB, Margulis L, Fester R (eds) Global ecology: towards a science of the biosphere. Academic, Boston, pp 31–50

    Google Scholar 

  112. Wieland A, Pape T, Möbius J et al (2008) Carbon pools and isotopic trends in a hypersaline cyanobacterial mat. Geobiology 6:171–86

    CAS  PubMed  Google Scholar 

  113. Reid RP, Visscher PT, Decho AW et al (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992

    CAS  PubMed  Google Scholar 

  114. Dupraz CP, Visscher PT (2005) Microbial lithification in marine stromatolites and hypersaline mats. Trends Microbiol 13:429–438

    CAS  PubMed  Google Scholar 

  115. Dupraz CP, Reid RP, Braissant O et al (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96:141–162

    CAS  Google Scholar 

  116. Visscher PT, Reid RP, Bebout BM (2000) Microscale observations of sulfate reduction: correlation of microbial activity with lithified micritic laminae in modern marine stromatolites. Geology 2:919–922

    Google Scholar 

  117. Heindel K, Birgel D, Peckmann J et al (2010) Formation of deglacial microbialites in coral reefs off Tahiti (IODP 310) involving sulfate-reducing bacteria. Palaios 25:618–635

    Google Scholar 

  118. Heindel K, Birgel D, Brunner B et al (2012) Post-glacial microbialite formation in coral reefs of the Pacific, Atlantic, and Indian Oceans. Chem Geol 304–305:117–130

    Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Australian Research Council’s Discovery Projects scheme (2010–2013, Grice, Greenwood, Snape and Summons). AP thanks WA Organic and Isotope Geochemistry Centre, Curtin University and CSIRO for top-up scholarship. Geoff Chidlow is thanked for GC-MS technical support. Roger E. Summons and Carolyn L. K. Colonero are thanked for MRM GC-MS technical support and data interpretation. MVK wishes to acknowledge the financial support from the University of New South Wales and the Agouron Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anais Pagès.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 12 kb)

ESM 2

(TIFF 242 kb)

ESM 3

(TIFF 245 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagès, A., Grice, K., Welsh, D.T. et al. Lipid Biomarker and Isotopic Study of Community Distribution and Biomarker Preservation in a Laminated Microbial Mat from Shark Bay, Western Australia. Microb Ecol 70, 459–472 (2015). https://doi.org/10.1007/s00248-015-0598-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0598-3

Keywords

Navigation