Microbial Ecology

, Volume 76, Issue 1, pp 52–63 | Cite as

Detection of Pathogenic and Non-pathogenic Bacteria in Drinking Water and Associated Biofilms on the Crow Reservation, Montana, USA

  • Crystal L. Richards
  • Susan C. Broadaway
  • Margaret J. Eggers
  • John Doyle
  • Barry H. Pyle
  • Anne K. Camper
  • Timothy E. FordEmail author
Environmental Microbiology


Private residences in rural areas with water systems that are not adequately regulated, monitored, and updated could have drinking water that poses a health risk. To investigate water quality on the Crow Reservation in Montana, water and biofilm samples were collected from 57 public buildings and private residences served by either treated municipal or individual groundwater well systems. Bacteriological quality was assessed including detection of fecal coliform bacteria and heterotrophic plate count (HPC) as well as three potentially pathogenic bacterial genera, Mycobacterium, Legionella, and Helicobacter. All three target genera were detected in drinking water systems on the Crow Reservation. Species detected included the opportunistic and frank pathogens Mycobacterium avium, Mycobacterium gordonae, Mycobacterium flavescens, Legionella pneumophila, and Helicobacter pylori. Additionally, there was an association between HPC bacteria and the presence of Mycobacterium and Legionella but not the presence of Helicobacter. This research has shown that groundwater and municipal drinking water systems on the Crow Reservation can harbor potential bacterial pathogens.


Drinking water Helicobacter pylori Legionella Mycobacterium 



The authors would like to thank the entire Crow Environmental Health Steering Committee for providing insight into research in reservation communities and community support for this work. Thanks to Crow community coordinators, Crescentia Cummins and Gail Whiteman, without their support, sample collection would not have been possible. Additional thanks to Al Parker for statistical support.

This work was supported by the National Institutes of Health grants; P20MD002317 from the National Center on Minority Health and Health Disparities, and P20 RR-16455-04 from the National Institute for General Medical Science. Dr. Ford was supported in part by a grant from the US Environmental Protection Agency’s Science to Achieve Results (US-EPA STAR) program and Crystal Richards and Margaret Eggers were supported by US-EPA STAR Fellowships. Although the research described in the article has been funded in part by the US Environmental Protection Agency’s STAR program through grant numbers RD833706, FP916936, and FP916744, it has not been subjected to any EPA or NIH review and, therefore, does not necessarily reflect the views of the Agencies, and no official endorsement should be inferred.


  1. 1.
    U.S. Census Bureau (2007) Current Housing Reports, Series H150/07, American Housing Survey for the United States, U.S. Government Printing Office, Washington, DC, 20401 (
  2. 2.
    Craun MF, Craun GF, Calderon RL, Beach MJ (2006) Waterborne outbreaks reported in the United States. J Water Health 04(Suppl 2):19–30CrossRefGoogle Scholar
  3. 3.
    National Center for Health Statistics (2010) Health, Unites States, 2009: with Special Feature on Medical Technology, Hyattsville, MD (
  4. 4.
    Anonymous (1999) The health care challenge: acknowledging disparity, confronting discrimination, and ensuring equality. United States National Archives and Records Administration, Washington, 20402Google Scholar
  5. 5.
    Harwell TS, Miller SH, Lemons DL, Helgerson SD, Gohdes D (2006) Cancer incidence in Montana: rates for American Indians exceed those for whites. Am J Prev Med 30:493-7Google Scholar
  6. 6.
    Arnold M, Moore SP, Hassler S, Ellison-Loschmann L, Forman D, Bray F (2014) The burden of stomach cancer in indigenous populations: a systematic review and global assessment. Gut 63:64–71. doi: 10.1136/gutjnl-2013-305033 CrossRefPubMedGoogle Scholar
  7. 7.
    Cummins C, Doyle J, Kindness L, Lefthand MJ, Walk U, Bends AL, Broadaway SC, Camper AK, Fitch R, Ford TE, Hamner S, Morrison AR, Richards CL, Young SL, Eggers MJ (2010) Community-based participatory research in Indian country improving health through water quality research and awareness. Fam Community Health 33:166–174. doi: 10.1097/FCH.0b013e3181e4bcd8 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Lehtola MJ, Torvinen E, Kusnetsov J, Pitkanen T, Maunula L, von Bonsdorff CH, Martikainen PJ, Wilks SA, Keevil CW, Miettinen IT (2007) Survival of Mycobacterium avium, Legionella pneumophila, Escherichia coli, and caliciviruses in drinking water-associated biofilms grown under high-shear turbulent flow. Appl Environ Microbiol 73:2854–2859. doi: 10.1128/aem. 02916-06 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Falkinham JO, Norton CD, LeChevallier MW (2001) Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other Mycobacteria in drinking water distribution systems. Appl Environ Microbiol 67:1225–1231CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Cassidy PM, Hedberg K, Saulson A, McNelly E, Winthrop KL (2009) Nontuberculous mycobacterial disease prevalence and risk factors: a changing epidemiology. Clin Infect Dis 49:E124–E129. doi: 10.1086/648443 CrossRefPubMedGoogle Scholar
  11. 11.
    Mazumder SA, Hicks A, Norwood J (2010) Mycobacterium gordonae pulmonary infection in an immunoocompetent adult. N Am J Med Sci 2:205–207PubMedPubMedCentralGoogle Scholar
  12. 12.
    Guillen SM, Hospital JS, Mampaso EG, Espejo AG, Baquedano CE, Calderon AO (1986) Gluteal abscess caused by Mycobacterium flavescens. Tubercle 67:151–153CrossRefGoogle Scholar
  13. 13.
    Costa J, Tiago I, da Costa MS, Verissimo A (2005) Presence and persistence of Legionella spp. in groundwater. Appl Environ Microbiol 71:663–671. doi: 10.1128/aem. 71.2.663-671.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Turetgen I, Sungur EI, Cotuk A (2005) Enumeration of Legionella pneumophila in cooling tower water systems. Environ Monit Assess 100:53–58. doi: 10.1007/s10661-005-7058-3 CrossRefPubMedGoogle Scholar
  15. 15.
    Marciano-Cabral F, Jamerson M, Kaneshiro ES (2010) Free-living amoebae, Legionella and Mycobacterium in tap water supplied by a municipal drinking water facility. J Water Health 08:71–82CrossRefGoogle Scholar
  16. 16.
    Percival S, Chalmers R, Embrey M, Hunter P, Sellwood J, Wyn-Jones P (2004) Microbiology of waterborne diseases. Elsevier Academic Press, San Diego, California, 92101Google Scholar
  17. 17.
    Kramer MH, Ford TE (1994) Legionellosis: ecological factors of an environmentally ‘new’ disease. Zentralbl Hyg Umweltmed 195:470–482PubMedGoogle Scholar
  18. 18.
    Sasaki K, Tajiri Y, Sata M, Fujii Y, Matsubara F, Zhao MG, Shimizu S, Toyonaga A, Tanikawa K (1999) Helicobacter pylori in the natural environment. Scand J Infect Dis 31:275–280CrossRefPubMedGoogle Scholar
  19. 19.
    Perez-Perez GI, Rothenbacher D, Brenner H (2004) Epidemiology of Helicobacter pylori infection. Helicobacter 9:1–6CrossRefPubMedGoogle Scholar
  20. 20.
    Bellack NR, Koehoorn MW, MacNab YC, Morshed MG (2006) A conceptual model of water’s role as a reservoir in Helicobacter pylori transmission: a review of the evidence. Epidemiol Infect 134:439–449. doi: 10.1017/s0950268806006005 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Montana Dept of Labor and Industry Research and Analysis Bureau (2008) Demographic and economic information for the Crow Reservation. Office of Research & Analysis, Job Service Division, Montana Dept of Labor & Industry, Helena, MT, pp 1–8Google Scholar
  22. 22.
    Geach J (2007) Source water delineation and assessment report. United States Environmental Protection Agency, Helena, pp 1–34Google Scholar
  23. 23.
    Turenne CY, Semret M, Cousins DV, Collins DM, Behr MA (2006) Sequencing of hsp65 distinguishes among subsets of the Mycobacterium avium complex. J Clin Microbiol 44:433–440. doi: 10.1128/jcm. 44.2.433-440.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Degnan AJ, Sonzogni WC, Standridge JH (2003) Development of a plating medium for selection of Helicobacter pylori from water samples. Appl Environ Microbiol 69:2914–2918. doi: 10.1128/aem. 69.5.2914-2918.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Schulze-Robbecke R, Weber A, Fischeder R (1991) Comparison of decontamination methods for the isolation of mycobacteria from drinking water samples. J Microbiol Methods 14:177–183CrossRefGoogle Scholar
  26. 26.
    Bartie C, Venter SN, Nel LH (2003) Identification methods for Legionella from environmental samples. Water Res 37:1362–1370CrossRefPubMedGoogle Scholar
  27. 27.
    Wullings BA, van der Kooij D (2006) Occurrence and genetic diversity of uncultured Legionella spp. in drinking water treated at temperatures below 15 degrees C. Appl Environ Microbiol 72:157–166. doi: 10.1128/aem. 72.1.157-166.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Böddinghaus B, Rogall T, Flohr T, Blöcker H, Böttger EC (1990) Detection and identification of mycobacteria by amplification of rRNA. J Clin Microbiol 28:1751–1759Google Scholar
  29. 29.
    Germani Y, Dauga C, Duval P, Huerre M, Levy M, Pialoux G, Sansonetti P, Grimont PAD (1997) Strategy for the detection of Helicobacter species by amplification of 16S rRNA genes and identification of H-felis in a human gastric biopsy. Res Microbiol 148:315–326CrossRefPubMedGoogle Scholar
  30. 30.
    Watson CL, Owen RJ, Said B, Lai S, Lee JV, Surman-Lee S, Nichols G (2004) Detection of Helicobacter pylori by PCR but not culture in water and biofilm samples from drinking water distribution systems in England. J Appl Microbiol 97:690–698. doi: 10.1111/j.1365-2672.2004.02360.x CrossRefPubMedGoogle Scholar
  31. 31.
    Voytek MA, Ashen JB, Fogerty LR, Kirshtein JD, Landa ER (2005) Detection of Helicobacter pylori and fecal indicator bacteria in five North American rivers. J Water Health 3:405–422CrossRefPubMedGoogle Scholar
  32. 32.
    Thompson JD, Gibson TJ, Higgins DG (2002) Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics Chapter 2: Unit 2.3.Google Scholar
  33. 33.
    Saitou N, Nei M (1987) The neighbor-joining method—a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  34. 34.
    Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132CrossRefGoogle Scholar
  35. 35.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi: 10.1093/molbev/msm092 CrossRefPubMedGoogle Scholar
  36. 36.
    United States Environmental Protection Agency (1998) Guidance for data quality assessment—practical methods for data analysis. Ed. Office of Research and Development, Washington, 20460Google Scholar
  37. 37.
    Kutner M, Nachtsheim C, Neter J, Li W (2004) Applied linear statistical models. McGraw-Hill/Irwin, New YorkGoogle Scholar
  38. 38.
    Conover WJ (1999) Practical nonparametric statistics. Elm Street Publishing Services, HinsdaleGoogle Scholar
  39. 39.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 57:289–300Google Scholar
  40. 40.
    Bitton G, Gerba CP (1984) Groundwater pollution microbiology: the emerging issue. John Wiley & Sons, New YorkGoogle Scholar
  41. 41.
    Kramer MH, Herwaldt BL, Calderon RL, Juranek DD (1996) Surveillance for waterborne-disease outbreaks—United States, 1993–1994. vol. 45. Centers for Disease Control, Washington, pp 1–33Google Scholar
  42. 42.
    Palmer CJ, Bonilla GF, Roll B, Paszkokolva C, Sangermano LR, Fujioka RS (1995) Detection of Legionella species in reclaimed water and air with the ENVIROAMP Legionella PCR kit and direct fluorescent-antibody staining. Appl Environ Microbiol 61:407–412PubMedPubMedCentralGoogle Scholar
  43. 43.
    September SM, Brozel VS, Venter SN (2004) Diversity of nontuberculoid Mycobacterium species in biofilms of urban and semiurban drinking water distribution systems. Appl Environ Microbiol 70:7571–7573. doi: 10.1128/aem. 70.12.7571-7573.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Allen MJ, Edberg SC, Reasoner DJ (2004) Heterotrophic plate count bacteria—what is their significance in drinking water? Int J Food Microbiol 92:265–274. doi: 10.1016/j.ijfoodmicro.2003.08.017 CrossRefPubMedGoogle Scholar
  45. 45.
    Manuel CM, Nunes OC, Melo LF (2010) Unsteady state flow and stagnation in distribution systems affect the biological stability of drinking water. Biofouling 26:129–139. doi: 10.1080/08927010903383448 CrossRefPubMedGoogle Scholar
  46. 46.
    Iivanainen EK, Martikainen PJ, Vaananen PK, Katila ML (1993) Environmental factors affecting the occurrence of Mycobacteria in brook waters. Appl Environ Microbiol 59:398–404PubMedPubMedCentralGoogle Scholar
  47. 47.
    LeChevallier MW, Seidler RJ, Evans TM (1980) Enumeration and characterization of standard plate-count bacteria in chlorinated and raw water supplies. Appl Environ Microbiol 40:922–930PubMedPubMedCentralGoogle Scholar
  48. 48.
    Schwartz T, Kalmbach S, Hoffmann S, Szewzyk U, Obst U (1998) PCR-based detection of mycobacteria in biofilms from a drinking water distribution system. J Microbiol Methods 34:113–123CrossRefGoogle Scholar
  49. 49.
    Le Dantec C, Duguet JP, Montiel A, Dumoutier N, Dubrou S, Vincent V (2002) Occurrence of mycobacteria in water treatment lines and in water distribution systems. Appl Environ Microbiol 68:5318–5325. doi: 10.1128/aem. 68.11.5318-5325.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Whiley H, Keegan A, Fallowfield H, Bentham R (2014) Detection of Legionella, L. Pneumophila and Mycobacterium avium complex (MAC) along potable water distribution pipelines. Int J Environ Res Public Health 11:7393–7405. doi: 10.3390/ijerph110707393 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Brooks T, Osicki RA, Springthorpe VS, Sattar SA, Filion L, Abrial D, Riffard S (2004) Detection and identification of Legionella species from groundwaters. J Toxicol Environ Health A 67:1845–1859. doi: 10.1080/15287390490492449 CrossRefPubMedGoogle Scholar
  52. 52.
    Donohue MJ, O’Connell K, Vesper SJ, Mistry JH, King D, Kostich M, Pfaller S (2014) Widespread molecular detection of Legionella pneumophila serogroup 1 in cold water taps across the United States. Environ Sci Technol 48:3145–3152. doi: 10.1021/es4055115 CrossRefPubMedGoogle Scholar
  53. 53.
    Temmerman R, Vervaeren H, Noseda B, Boon N, Verstraete W (2006) Necrotrophic growth of Legionella pneumophila. Appl Environ Microbiol 72:4323–4328. doi: 10.1128/aem. 00070-06 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Bunn JEG, MacKay WG, Thomas JE, Reid DC, Weaver LT (2002) Detection of Helicobacter pylori DNA in drinking water biofilms: implications for transmission in early life. Lett Appl Microbiol 34:450–454CrossRefPubMedGoogle Scholar
  55. 55.
    Reed C, von Reyn CF, Chamblee S, Ellerbrock TV, Johnson JW, Marsh BJ, Johnson LS, Trenschel RJ, Horsburgh CR (2006) Environmental risk factors for infection with Mycobacterium avium complex. Am J Epidemiol 164:32–40. doi: 10.1093/aje/kwj159 CrossRefPubMedGoogle Scholar
  56. 56.
    Aronson T, Holtzman A, Glover N, Boian M, Froman S, Berlin OGW, Hill H, Stelma G (1999) Comparison of large restriction fragments of Mycobacterium avium isolates recovered from AIDS and non-AIDS patients with those of isolates from potable water. J Clin Microbiol 37:1008–1012PubMedPubMedCentralGoogle Scholar
  57. 57.
    Marshall C, Samuel J, Galloway A, Pedler S (2008) Mycobacterium mucogenicum from the Hickman line of an immunocompromised patient. J Clin Pathol 61:140–141. doi: 10.1136/jcp.2007.049486 CrossRefPubMedGoogle Scholar
  58. 58.
    Diederen BMW, de Jong CMA, Aarts I, Peeters MF, van der Zee A (2007) Molecular evidence for the ubiquitous presence of Legionella species in Dutch tap water installations. J Water Health 5:375–383. doi: 10.2166/wh.2007.033 CrossRefPubMedGoogle Scholar
  59. 59.
    Hall-Stoodley L, Lappin-Scott H (1998) Biofilm formation by the rapidly growing mycobacterial species Mycobacterium fortuitum. FEMS Microbiol Lett 168:77–84CrossRefPubMedGoogle Scholar
  60. 60.
    Torvinen E, Lehtola MJ, Martikainen PJ, Miettinen IT (2007) Survival of Mycobacterium avium in drinking water biofilms as affected by water flow velocity, availability of phosphorus, and temperature. Appl Environ Microbiol 73:6201–6207. doi: 10.1128/aem. 00828-07 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Declerck P, Behets J, van Hoef V, Ollevier F (2007) Replication of Legionella pneumophila in floating biofilms. Curr Microbiol 55:435–440. doi: 10.1007/s00284-007-9006-7 CrossRefPubMedGoogle Scholar
  62. 62.
    Giao MS, Azevedo NF, Wilks SA, Vieira MJ, Keevil CW (2011) Interaction of Legionella pneumophila and Helicobacter pylori with bacterial species isolated from drinking water biofilms. BMC Microbiol 11:57. doi: 10.1186/1471-2180-11-57 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Garcia A, Salas-Jara MJ, Herrera C, Gonzalez C (2014) Biofilm and helicobacter pylori: from environment to human host. World J Gastroenterol 20:5632–5638. doi: 10.3748/wjg.v20.i19.5632 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Baker KH, Hegarty JP (2001) Presence of Helicobacter pylori in drinking water is associated with clinical infection. Scand J Infect Dis 33:744–746CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Crystal L. Richards
    • 1
  • Susan C. Broadaway
    • 2
  • Margaret J. Eggers
    • 2
  • John Doyle
    • 3
    • 4
    • 5
  • Barry H. Pyle
    • 2
  • Anne K. Camper
    • 6
  • Timothy E. Ford
    • 7
    Email author
  1. 1.Department of Biological and Physical SciencesMontana State University BillingsBillingsUSA
  2. 2.Department of Microbiology and Center for Biofilm EngineeringMontana State UniversityBozemanUSA
  3. 3.Little Big Horn CollegeCrow AgencyUSA
  4. 4.Apsaalooke Water and Wastewater AuthorityHardinUSA
  5. 5.Crow Tribal MemberCrow AgencyUSA
  6. 6.Department of Civil Engineering and Center for Biofilm EngineeringMontana State UniversityBozemanUSA
  7. 7.School of Health ProfessionsShenandoah UniversityWinchesterUSA

Personalised recommendations