Skip to main content
Log in

Comparative Metagenomics of Eight Geographically Remote Terrestrial Hot Springs

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Hot springs are natural habitats for thermophilic Archaea and Bacteria. In this paper, we present the metagenomic analysis of eight globally distributed terrestrial hot springs from China, Iceland, Italy, Russia, and the USA with a temperature range between 61 and 92 C and pH between 1.8 and 7. A comparison of the biodiversity and community composition generally showed a decrease in biodiversity with increasing temperature and decreasing pH. Another important factor shaping microbial diversity of the studied sites was the abundance of organic substrates. Several species of the Crenarchaeal order Thermoprotei were detected, whereas no single bacterial species was found in all samples, suggesting a better adaptation of certain archaeal species to different thermophilic environments. Two hot springs show high abundance of Acidithiobacillus, supporting the idea of a true thermophilic Acidithiobacillus species that can thrive in hyperthermophilic environments. Depending on the sample, up to 58 % of sequencing reads could not be assigned to a known phylum, reinforcing the fact that a large number of microorganisms in nature, including those thriving in hot environments remain to be isolated and characterized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. http://www.hotzyme.com

References

  1. Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–10. doi:10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  2. Burgess E, Unrine J, Mills G, Romanek C, Wiegel J (2012) Comparative geochemical and microbiological characterization of two thermal pools in the Uzon Caldera, Kamchatka, Russia. Microb Ecol 63:471–89. doi:10.1007/s00248-011-9979-4

    Article  PubMed  Google Scholar 

  3. Cambillau C, Claverie J (2000) Structural and genomic correlates of hyperthermostability. J Biol Chem 275(32):383–6. doi:10.1074/jbc.C000497200

    Google Scholar 

  4. Chevreux B, Pfisterer T, Drescher B, Driesel A, Müller W, Wetter T, Suhai S (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14:1147–59. doi:10.1101/gr.1917404

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930. doi:10.1111/j.1654-1103.2003.tb02228.x

    Article  Google Scholar 

  6. Fierer N, Jackson R (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–31. doi:10.1073/pnas.0507535103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Hou W, Wang S, Dong H, Jiang H, Briggs B, Peacock J, Huang Q, Huang L, Wu G, Zhi X, Li W, Dodsworth J, Hedlund B, Zhang C, Hartnett H, Dijkstra P, Hungate B (2013) A comprehensive census of microbial diversity in hot springs of Tengchong, Yunnan Province China using 16S rRNA gene pyrosequencing. PLoS One 8:e53,350. doi:10.1371/journal.pone.0053350

    Article  CAS  Google Scholar 

  8. Huson D, Mitra S (2012) Introduction to the analysis of environmental sequences: metagenomics with MEGAN. Methods Mol Biol 856:415–29. doi:10.1007/978-1-61779-585-5_17

    Article  CAS  PubMed  Google Scholar 

  9. Huson D, Mitra S, Ruscheweyh H, Weber N, Schuster S (2011) Integrative analysis of environmental sequences using MEGAN4. Genome Res 21:1552–60. doi:10.1101/gr.120618.111

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Inskeep W, Jay Z, Herrgard M, Kozubal M, Rusch D, Tringe S, Macur R, Jennings R, Boyd E, Spear J, Roberto F (2013) Phylogenetic and functional analysis of metagenome sequence from high-temperature Archaeal habitats demonstrate linkages between metabolic potential and geochemistry. Front Microbiol 4:95. doi:10.3389/fmicb.2013.00095

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Inskeep W, Jay Z, Tringe S, Herrgård M, Rusch D (2013) YNP Metagenome Project Steering Committee and Working Group Members:f The YNP metagenome project: Environmental parameters responsible for microbial distribution in the Yellowstone Geothermal Ecosystem. Front Microbiol 4:67. doi:10.3389/fmicb.2013.00067

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Inskeep W, Rusch D, Jay Z, Herrgard M, Kozubal M, Richardson T, Macur R, Hamamura N, Jennings R, Fouke B, Reysenbach A, Roberto F, Young M, Schwartz A, Boyd E, Badger J, Mathur E, Ortmann A, Bateson M, Geesey G, Frazier M (2010) Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One e9773:5. doi:10.1371/journal.pone.0009773

    Google Scholar 

  13. Jiang B, Song K, Ren J, Deng M, Sun F, Zhang X (2012) Comparison of metagenomic samples using sequence signatures. BMC Genomics 13:730. doi:10.1186/1471-2164-13-730

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Klatt C, Wood J, Rusch D, Bateson M, Hamamura N, Heidelberg J, Grossman A, Bhaya D, Cohan F, Kühl M, Bryant D, Ward D (2011) Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J 5:1262–78. doi:10.1038/ismej.2011.73

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kreil D, Ouzounis C (2001) Identification of thermophilic species by the amino acid compositions deduced from their genomes. Nucleic Acids Res 29:1608–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lewin A, Wentzel A, Valla S (2012) Metagenomics of microbial life in extreme temperature environments. Curr Opin Biotechnol

  17. Li H (2013) Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM, Preprint

  18. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760. doi:10.1093/bioinformatics/btp324

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22:1658–9. doi:10.1093/bioinformatics/btl158

    Article  CAS  PubMed  Google Scholar 

  20. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–35. doi:10.1128/AEM.71.12.8228-8235.2005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Magoč T, Salzberg S (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–63. doi:10.1093/bioinformatics/btr507

    Article  PubMed Central  PubMed  Google Scholar 

  22. Margulies M, Egholm M, Altman W, Attiya S, Bader J, Bemben L, Berka J, Braverman M, Chen Y, Chen Z, Dewell S, Du L, Fierro J, Gomes X, Godwin B, He W, Helgesen S, Ho C, Ho C, Irzyk G, Jando S, Alenquer M, Jarvie T, Jirage K, Kim J, Knight J, Lanza J, Leamon J, Lefkowitz S, Lei M, Li J, Lohman K, Lu H, Makhijani V, McDade K, McKenna M, Myers E, Nickerson E, Nobile J, Plant R, Puc B, Ronan M, Roth G, Sarkis G, Simons J, Simpson J, Srinivasan M, Tartaro K, Tomasz A, Vogt K, Volkmer G, Wang S, Wang Y, Weiner M, Yu P, Begley R, Rothberg J (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437:376–80. doi:10.1038/nature03959

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Marsh C, Larsen D (1953) Characterization of some thermophilic bacteria from the hot springs of Yellowstone National Park. J Bacteriol 65:193–7

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Meyer F, Paarmann D, D’Souza M, Olson R, Glass E, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards R (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386. doi:10.1186/1471-2105-9-386

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Miller S, Strong A, Jones K, Ungerer M (2009) Bar-coded pyrosequencing reveals shared bacterial community properties along the temperature gradients of two alkaline hot springs in yellowstone national park. Appl Environ Microbiol 75:4565–72. doi:10.1128/AEM.02792-08

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Moser M, DiFrancesco R, Gowda K, Klingele A, Sugar D, Stocki S, Mead D, Schoenfeld T (2012) Thermostable DNA polymerase from a viral metagenome is a potent RT-PCR enzyme. PLoS One 7(e38):371. doi:10.1371/journal.pone.0038371

    Google Scholar 

  27. Myers E, Sutton G, Delcher A, Dew I, Fasulo D, Flanigan M, Kravitz S, Mobarry C, Reinert K, Remington K, Anson E, Bolanos R, Chou H, Jordan C, Halpern A, Lonardi S, Beasley E, Brandon R, Chen L, Dunn P, Lai Z, Liang Y, Nusskern D, Zhan M, Zhang Q, Zheng X, Rubin G, Adams M, Venter J (2000) A whole-genome assembly of drosophila. Science 287:2196–204

    Article  CAS  PubMed  Google Scholar 

  28. Overbeek R, Begley T, Butler R, Choudhuri J, Chuang H, Cohoon M, de Crécy-Lagard V, Diaz N, Disz T, Edwards R, Fonstein M, Frank E, Gerdes S, Glass E, Goesmann A, Hanson A, Iwata-Reuyl D, Jensen R, Jamshidi N, Krause L, Kubal M, Larsen N, Linke B, McHardy A, Meyer F, Neuweger H, Olsen G, Olson R, Osterman A, Portnoy V, Pusch G, Rodionov D, Rückert C, Steiner J, Stevens R, Thiele I, Vassieva O, Ye Y, Zagnitko O, Vonstein V (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33:5691–702. doi:10.1093/nar/gki866

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Price M, Dehal P, Arkin A (2010) FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One 5(3):e9490. doi:10.1371/journal.pone.0009490

    Article  PubMed Central  PubMed  Google Scholar 

  30. Pruesse E, Peplies J, Glöckner F (2012) SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–9. doi:10.1093/bioinformatics/bts252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner F (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Riesenfeld C, Schloss P, Handelsman J (2004) Metagenomics: genomic analysis of microbial communities. Annu Rev Genet 38:525–52. doi:10.1146/annurev.genet.38.072902.091216

    Article  CAS  PubMed  Google Scholar 

  33. Rusch D, Halpern A, Sutton G, Heidelberg K, Williamson S, Yooseph S, Wu D, Eisen J, Hoffman J, Remington K, Beeson K, Tran B, Smith H, Baden-Tillson H, Stewart C, Thorpe J, Freeman J, Andrews-Pfannkoch C, Venter J, Li K, Kravitz S, Heidelberg J, Utterback T, Rogers Y, Falcón L, Souza V, Bonilla-Rosso G, Eguiarte L, Karl D, Sathyendranath S, Platt T, Bermingham E, Gallardo V, Tamayo-Castillo G, Ferrari M, Strausberg R, Nealson K, Friedman R, Frazier M, Venter J (2007) The sorcerer II global ocean sampling expedition: northwest atlantic through eastern tropical pacific. PLoS Biol e77:5. doi:10.1371/journal.pbio.0050077

    Google Scholar 

  34. Saelensminde G, Halskau J, Helland R, Willassen N, Jonassen I (2007) Structure-dependent relationships between growth temperature of prokaryotes and the amino acid frequency in their proteins. Extremophiles 11:585–96. doi:10.1007/s00792-007-0072-3

    Article  CAS  PubMed  Google Scholar 

  35. Saelensminde G, Halskau J, Jonassen I (2009) Amino acid contacts in proteins adapted to different temperatures: hydrophobic interactions and surface charges play a key role. Extremophiles 13:11–20. doi:10.1007/s00792-008-0192-4

    Article  CAS  PubMed  Google Scholar 

  36. Sahm K, John P, Nacke H, Wemheuer B, Grote R, Daniel R, Antranikian G (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17:649–62. doi:10.1007/s00792-013-0548-2

    Article  CAS  PubMed  Google Scholar 

  37. Salter S, Cox M, Turek E, Calus S, Cookson W, Moffatt M, Turner P, Parkhill J, Loman N, Walker A (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87. doi:10.1186/s12915-014-0087-z

    Article  PubMed Central  PubMed  Google Scholar 

  38. Simon C, Daniel R (2009) Achievements and new knowledge unraveled by metagenomic approaches. Appl Microbiol Biotechnol 85:265–76. doi:10.1007/s00253-009-2233-z

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Sommer D, Delcher A, Salzberg S, Pop M (2007) Minimus: a fast, lightweight genome assembler. BMC Bioinformatics 8:64. doi:10.1186/1471-2105-8-64

    Article  PubMed Central  PubMed  Google Scholar 

  40. Suhre K, Claverie J (2003) Genomic correlates of hyperthermostability, an update. J Biol Chem 278 (17):198–202. doi:10.1074/jbc.M301327200

    Google Scholar 

  41. Teal T, Schmidt T (2010) Identifying and removing artificial replicates from 454 pyrosequencing data. Cold Spring Harb Protoc 2010:pdb.prot5409. doi:10.1101/pdb.prot5409

    Article  PubMed  Google Scholar 

  42. Tringe S, Hugenholtz P (2008) A renaissance for the pioneering 16S rRNA gene. Curr Opin Microbiol 11:442–6. doi:10.1016/j.mib.2008.09.011

    Article  CAS  PubMed  Google Scholar 

  43. Urbieta M, González Toril E, Aguilera A, Giaveno M, Donati E (2012) First prokaryotic biodiversity assessment using molecular techniques of an acidic river in neuquén, argentina. Microb Ecol 64:91–104. doi:10.1007/s00248-011-9997-2

    Article  PubMed  Google Scholar 

  44. Valverde A, Tuffin M, Cowan D (2012) Biogeography of bacterial communities in hot springs: a focus on the actinobacteria. Extremophiles 16:669–79. doi:10.1007/s00792-012-0465-9

    Article  PubMed  Google Scholar 

  45. Wemheuer B, Taube R, Akyol P, Wemheuer F, Daniel R (2013) Microbial diversity and biochemical potential encoded by thermal spring metagenomes derived from the kamchatka peninsula. Archaea 2013(136):714. doi:10.1155/2013/136714

    Google Scholar 

  46. Zeldovich K, Berezovsky I, Shakhnovich E (2007) Protein and DNA sequence determinants of thermophilic adaptation. PLoS Comput Biol e5:3. doi:10.1371/journal.pcbi.0030005

    Google Scholar 

  47. Zhao Y, Tang H, Ye Y (2012) RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics 28:125–6. doi:10.1093/bioinformatics/btr595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Union 7th Framework Program-me FP7/2007-2013 under grant agreement no. 265933.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Peng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1.93 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menzel, P., Gudbergsdóttir, S.R., Rike, A.G. et al. Comparative Metagenomics of Eight Geographically Remote Terrestrial Hot Springs. Microb Ecol 70, 411–424 (2015). https://doi.org/10.1007/s00248-015-0576-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-015-0576-9

Keywords

Navigation