Skip to main content

Advertisement

Log in

Pond Sediment Magnetite Grains Show a Distinctive Microbial Community

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Formation of magnetite in anaerobic sediments is thought to be enhanced by the activities of iron-reducing bacteria. Geobacter has been implicated as playing a major role, as in culture its cells are often associated with extracellular magnetite grains. We studied the bacterial community associated with magnetite grains in sediment of a freshwater pond in South Korea. Magnetite was isolated from the sediment using a magnet. The magnetite-depleted fraction of sediment was also taken for comparison. DNA was extracted from each set of samples, followed by PCR for 16S bacterial ribosomal RNA (rRNA) gene and HiSeq sequencing. The bacterial communities of the magnetite-enriched and magnetite-depleted fractions were significantly different. The enrichment of three abundant operational taxonomic units (OTUs) suggests that they may either be dependent upon the magnetite grain environment or may be playing a role in magnetite formation. The most abundant OTU in magnetite-enriched fractions was Geobacter, bolstering the case that this genus is important in magnetite formation in natural systems. Other major OTUs strongly associated with the magnetite-enriched fraction, rather than the magnetite-depleted fraction, include a Sulfuricella and a novel member of the Betaproteobacteria. The existence of distinct bacterial communities associated with particular mineral grain types may also be an example of niche separation and coexistence in sediments and soils, which cannot usually be detected due to difficulties in separating and concentrating minerals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Harrison RJ, Dunin-Borkowski RE, Putnis A (2002) Direct imaging of nanoscale magnetic interactions in minerals. Proc Natl Acad Sci U S A 99:16556–16561. doi:10.1073/pnas.262514499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Thomas-Keprta KL, Bazylinski DA, Kirschvink JL, Clemett SJ, McKay DS, Wentworth SJ, Vali H, Gibson EK, Romanek CS (2000) Elongated prismatic magnetite crystals in ALH84001 carbonate globules: potential Martian magnetofossils. Geochim Cosmochim Acta 64:4049–4081. doi:10.1016/s0016-7037(00)00481-6

    Article  CAS  PubMed  Google Scholar 

  3. Bazylinski DA, Frankel RB, Konhauser KO (2007) Modes of biomineralization of magnetite by microbes. Geomicrobiol J 24:465–475. doi:10.1080/01490450701572259

    Article  CAS  Google Scholar 

  4. Hansel CM, Benner SG, Neiss J, Dohnalkova A, Kukkadapu RK, Fendorf S (2003) Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim Cosmochim Acta 67:2977–2992. doi:10.1016/s0016-7037(03)00276-x

    Article  CAS  Google Scholar 

  5. Lovley DR, Stolz JF, Nord GL, Phillips EJP (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254

    Article  CAS  Google Scholar 

  6. Schuler D, Frankel RB (1999) Bacterial magnetosomes: microbiology, biomineralization and biotechnological applications. Appl Microbiol Biotechnol 52:464–473

    Article  CAS  PubMed  Google Scholar 

  7. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. Adv Microb Physiol 49:219–286. doi:10.1016/s0065-2911(04)49005-5

    CAS  PubMed  Google Scholar 

  8. Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP (2011) Geobacter: the microbe electric’s physiology, ecology, and practical applications. Adv Microb Physiol 59:1–100. doi:10.1016/b978-0-12-387661-4.00004-5

    CAS  PubMed  Google Scholar 

  9. Reguera G, McCarthy KD, Mehta T, Nicoll JS, Tuominen MT, Lovley DR (2005) Extracellular electron transfer via microbial nanowires. Nature 435:1098–1101

    Article  CAS  PubMed  Google Scholar 

  10. Gans J, Wolinsky M, Dunbar J (2005) Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309:1387–1390. doi:10.1126/science.1112665

    Article  CAS  PubMed  Google Scholar 

  11. Torsvik V, Goksoyr J, Daae FL (1990) High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Dechesne A, Or D, Smets BF (2008) Limited diffusive fluxes of substrate facilitate coexistence of two competing bacterial strains. FEMS Microbiol Ecol 64:1–8. doi:10.1111/j.1574-6941.2008.00446.x

    Article  CAS  PubMed  Google Scholar 

  13. Vos M, Wolf AB, Jennings SJ, Kowalchuk GA (2013) Micro-scale determinants of bacterial diversity in soil. FEMS Microbiol Rev 37:936–954. doi:10.1111/1574-6976.12023

    CAS  PubMed  Google Scholar 

  14. Faulkner SP, Patrick WH, Gambrell RP (1989) Field techniques for measuring wetland soil parameters. Soil Sci Soc Am J 53:883–890

    Article  CAS  Google Scholar 

  15. Vo NXQ, Kang H (2013) Regulation of soil enzyme activities in constructed wetlands under a short-term drying period. Chem Ecol 29:146–165. doi:10.1080/02757540.2012.711323

    Article  CAS  Google Scholar 

  16. Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: PAired-eND Assembler for Illumina sequences. BMc Bioinforma 13. doi: 10.1186/1471-2105-13-31

  17. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/aem. 01541-09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, Park SC, Jeon YS, Lee JH, Yi H, Won S, Chun J (2012) Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721. doi:10.1099/ijs. 0.038075-0

    Article  CAS  PubMed  Google Scholar 

  19. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrant E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  20. Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148:257–266

    CAS  PubMed  Google Scholar 

  21. Su D, Horvat J, Munroe P, Ahn H, Ranjbartoreh AR, Wang G (2012) Polyhedral magnetite nanocrystals with multiple facets: facile synthesis, structural modelling, magnetic properties and application for high capacity lithium storage. Chemistry (Weinheim Bergstrasse, Germany) 18:488–497. doi:10.1002/chem.201101939

    CAS  Google Scholar 

Download references

Acknowledgments

SHA, VK thankfully acknowledge National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. NRF-2010-0029227, NRF-2012R1A1A2008196) for HRTEM and XRD analysis. H.Kang is grateful to ERC (No. 2011-0030040)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Adams.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Phylum breakdown of magnetite-enriched and magnetite-depleted samples. (GIF 33 kb)

High Resolution Image

(EPS 4526 kb)

Table S1

Relative abundance (in each fraction) and taxonomical breakdown of the 100 most abundant OTUs. (XLSX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, HK., Sonkaria, S., Khare, V. et al. Pond Sediment Magnetite Grains Show a Distinctive Microbial Community. Microb Ecol 70, 168–174 (2015). https://doi.org/10.1007/s00248-014-0562-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0562-7

Keywords

Navigation