Microbial Ecology

, Volume 69, Issue 3, pp 586–596 | Cite as

Community Composition of Known and Uncultured Archaeal Lineages in Anaerobic or Anoxic Wastewater Treatment Sludge

  • Kyohei Kuroda
  • Masashi Hatamoto
  • Nozomi Nakahara
  • Kenichi Abe
  • Masanobu Takahashi
  • Nobuo Araki
  • Takashi YamaguchiEmail author
Environmental Microbiology


Microbial systems are widely used to treat different types of wastewater from domestic, agricultural, and industrial sources. Community composition is an important factor in determining the successful performance of microbial treatment systems; however, a variety of uncultured and unknown lineages exist in sludge that requires identification and characterization. The present study examined the archaeal community composition in methanogenic, denitrifying, and nitrogen-/phosphate-removing wastewater treatment sludge by Archaea-specific 16S rRNA gene sequencing analysis using Illumina sequencing technology. Phylotypes belonging to Euryarchaeota, including methanogens, were most abundant in all samples except for nitrogen-/phosphate-removing wastewater treatment sludge. High levels of Deep Sea Hydrothermal Vent Group 6 (DHVEG-6), WSA2, Terrestrial Miscellaneous Euryarchaeotal Group, and Miscellaneous Crenarchaeotic Group were also detected. Interestingly, DHVEG-6 was dominant in nitrogen-/phosphate-removing wastewater treatment sludge, indicating that unclear lineages of Archaea still exist in the anaerobic wastewater treatment sludges. These results reveal a previously unknown diversity of Archaea in sludge that can potentially be exploited for the development of more efficient wastewater treatment strategies.


Archaeal community composition Uncultured lineages 16S rRNA gene sequencing Diversity analysis Anaerobic wastewater treatment sludge 



This research was supported in part by research grants from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT), the Japan Society for the Promotion of Science (JSPS), and the Science and Technology Research Partnership for Sustainable Development (SATREPS). The authors thank Aqua and Soil Environmental laboratory members of Aida A.A. and Maharajan N. for the critical reading of the manuscript; Furukawa A., Ohtsuki K., Chosei T., Okabe Y., Sakamoto K. and Watari T. for the assistance with the reactor operation; and Sato T. and Yamamoto M. for supporting the experiment and stimulating discussions.

Supplementary material

248_2014_525_MOESM1_ESM.docx (1.5 mb)
ESM 1 (DOCX 1512 kb)


  1. 1.
    Auguet JC, Casamayor EO (2008) A hotspot for cold crenarchaeota in the neuston of high mountain lakes. Environ Microbiol 10(4):1080–1086CrossRefPubMedGoogle Scholar
  2. 2.
    Offre P, Spang A, Schleper C (2013) Archaea in biogeochemical cycles. Annu Rev Microbiol 67:437–457CrossRefPubMedGoogle Scholar
  3. 3.
    Liu Y, Whitman WB (2008) Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci 1125:171–189CrossRefPubMedGoogle Scholar
  4. 4.
    Sekiguchi Y, Kamagata Y, Syutsubo K, Ohashi A, Harada H, Nakamura K (1998) Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology 144(Pt 9):2655–2665CrossRefPubMedGoogle Scholar
  5. 5.
    Narihiro T, Terada T, Kikuchi K, Iguchi A, Ikeda M, Yamauchi T, Shiraishi K, Kamagata Y, Nakamura K, Sekiguchi Y (2009) Comparative analysis of bacterial and archaeal communities in methanogenic sludge granules from upflow anaerobic sludge blanket reactors treating various food-processing, high-strength organic wastewaters. Microbes Environ 24(2):88–96CrossRefPubMedGoogle Scholar
  6. 6.
    Sundberg C, Al-Soud WA, Larsson M, Alm E, Yekta SS, Svensson BH, Sorensen SJ, Karlsson A (2013) 454 pyrosequencing analyses of bacterial and archaeal richness in 21 full-scale biogas digesters. FEMS Microbiol Ecol 85(3):612–626CrossRefPubMedGoogle Scholar
  7. 7.
    Tabatabaei M, Rahim RA, Abdullah N, Wright ADG, Shirai Y, Sakai K, Sulaiman A, Hassan MA (2010) Importance of the methanogenic archaea populations in anaerobic wastewater treatments. Process Biochem 45(8):1214–1225CrossRefGoogle Scholar
  8. 8.
    Chouari R, Le Paslier D, Daegelen P, Ginestet P, Weissenbach J, Sghir A (2005) Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ Microbiol 7(8):1104–1115CrossRefPubMedGoogle Scholar
  9. 9.
    Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Sakai S, Ehara M, Tseng IC, Yamaguchi T, Brauer SL, Cadillo-Quiroz H, Zinder SH, Imachi H (2012) Methanolinea mesophila sp. nov., a hydrogenotrophic methanogen isolated from rice field soil, and proposal of the archaeal family Methanoregulaceae fam. nov. within the order Methanomicrobiales. Int J Syst Evol Microbiol 62(Pt 6):1389–1395CrossRefPubMedGoogle Scholar
  11. 11.
    Iino T, Tamaki H, Tamazawa S, Ueno Y, Ohkuma M, Suzuki K, Igarashi Y, Haruta S (2013) Candidatus Methanogranum caenicola: a novel methanogen from the anaerobic digested sludge, and proposal of Methanomassiliicoccaceae fam. nov. and Methanomassiliicoccales ord. nov., for a methanogenic lineage of the class Thermoplasmata. Microbes Environ 28(2):244–250CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Ghanimeh SA, Saikaly PE, Li D, El-Fadel M (2013) Population dynamics during startup of thermophilic anaerobic digesters: the mixing factor. Waste Manag 33(11):2211–2218CrossRefPubMedGoogle Scholar
  13. 13.
    Shi Y, Hu S, Lou J, Lu P, Keller J, Yuan Z (2013) Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. Environ Sci Technol 47(20):11577–11583CrossRefPubMedGoogle Scholar
  14. 14.
    Bandara WMKRTW, Kindaichi T, Satoh H, Sasakawa M, Nakahara Y, Takahashi M, Okabe S (2012) Anaerobic treatment of municipal wastewater at ambient temperature: analysis of archaeal community structure and recovery of dissolved methane. Water Res 46(17):5756–5764CrossRefPubMedGoogle Scholar
  15. 15.
    Chouari R, Paslier D, Daegelen P, Dauga C, Weissenbach J, Sghir A (2010) Molecular analyses of the microbial community composition of an anoxic basin of a municipal wastewater treatment plant reveal a novel lineage of Proteobacteria. Microb Ecol 60(2):272–281CrossRefPubMedGoogle Scholar
  16. 16.
    Ye L, Shao M-F, Zhang T, Tong AHY, Lok S (2011) Analysis of the bacterial community in a laboratory-scale nitrification reactor and a wastewater treatment plant by 454-pyrosequencing. Water Res 45(15):4390–4398CrossRefPubMedGoogle Scholar
  17. 17.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Huber JA, Mark Welch DB, Morrison HG, Huse SM, Neal PR, Butterfield DA, Sogin ML (2007) Microbial population structures in the deep marine biosphere. Science 318(5847):97–100CrossRefPubMedGoogle Scholar
  19. 19.
    Roh SW, Kim KH, Nam YD, Chang HW, Park EJ, Bae JW (2010) Investigation of archaeal and bacterial diversity in fermented seafood using barcoded pyrosequencing. ISME J 4(1):1–16CrossRefPubMedGoogle Scholar
  20. 20.
    Takai K, Moser DP, DeFlaun M, Onstott TC, Fredrickson JK (2001) Archaeal diversity in waters from deep South African gold mines. Appl Environ Microbiol 67(12):5750–5760CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Takai K, Horikoshi K (2000) Rapid detection and quantification of members of the archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66(11):5066–5072CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Masella AP, Bartram AK, Truszkowski JM, Brown DG, Neufeld JD (2012) PANDAseq: paired-end assembler for illumina sequences. BMC Bioinforma 13:31CrossRefGoogle Scholar
  24. 24.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):2460–2461CrossRefPubMedGoogle Scholar
  25. 25.
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410CrossRefPubMedGoogle Scholar
  26. 26.
    Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methe B, DeSantis TZ, Human Microbiome C, Petrosino JF, Knight R, Birren BW (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21(3):494–504CrossRefPubMedCentralPubMedGoogle Scholar
  27. 27.
    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71(12):8228–8235CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Hugenholtz P, Tyson GW, Webb RI, Wagner AM, Blackall LL (2001) Investigation of candidate division TM7, a recently recognized major lineage of the domain Bacteria with no known pure-culture representatives. Appl Environ Microbiol 67(1):411–419CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Alonso-Saez L, Andersson A, Heinrich F, Bertilsson S (2011) High archaeal diversity in Antarctic circumpolar deep waters. Environ Microbiol Rep 3(6):689–697CrossRefPubMedGoogle Scholar
  30. 30.
    Luo G, Wang W, Angelidaki I (2013) Anaerobic digestion for simultaneous sewage sludge treatment and CO biomethanation: process performance and microbial ecology. Environ Sci Technol 47(18):10685–10693PubMedGoogle Scholar
  31. 31.
    Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7(2):173–190CrossRefGoogle Scholar
  32. 32.
    Ritari J, Koskinen K, Hultman J, Kurola JM, Kymalainen M, Romantschuk M, Paulin L, Auvinen P (2012) Molecular analysis of meso- and thermophilic microbiota associated with anaerobic biowaste degradation. BMC Microbiol 12:121CrossRefPubMedCentralPubMedGoogle Scholar
  33. 33.
    Mori K, Harayama S (2011) Methanobacterium petrolearium sp. nov. and Methanobacterium ferruginis sp. nov., mesophilic methanogens isolated from salty environments. Int J Syst Evol Microbiol 61(Pt 1):138–143CrossRefPubMedGoogle Scholar
  34. 34.
    Kendall MM, Boone DR (2006) The order Methanosarcinales. Proc Natl Acad Sci U S A 3:244–256Google Scholar
  35. 35.
    Pender S, Toomey M, Carton M, Eardly D, Patching JW, Colleran E, O’Flaherty V (2004) Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors. Water Res 38(3):619–630CrossRefPubMedGoogle Scholar
  36. 36.
    Onodera T, Sase S, Choeisai P, Yoochatchaval W, Sumino H, Yamaguchi T, Ebie Y, Xu K, Tomioka N, Mizuochi M, Syutsubo K (2013) Development of a treatment system for molasses wastewater: the effects of cation inhibition on the anaerobic degradation process. Bioresour Technol 131:295–302CrossRefPubMedGoogle Scholar
  37. 37.
    Karakashev D, Batstone DJ, Trably E, Angelidaki I (2006) Acetate oxidation is the dominant methanogenic pathway from acetate in the absence of Methanosaetaceae. Appl Environ Microbiol 72(7):5138–5141CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Imachi H, Sakai S, Sekiguchi Y, Hanada S, Kamagata Y, Ohashi A, Harada H (2008) Methanolinea tarda gen. nov., sp nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int J Syst Evol Microbiol 58(Pt 1):294–301CrossRefPubMedGoogle Scholar
  39. 39.
    Chen J, Yin X (2013) Stratified communities of methanogens in the Jiulong river estuarine sediments, southern China. Indian J Microbiol 53(4):432–437CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Lenchi N, Inceoglu O, Kebbouche-Gana S, Gana ML, Lliros M, Servais P, Garcia-Armisen T (2013) Diversity of microbial communities in production and injection waters of Algerian oilfields revealed by 16S rRNA gene amplicon 454 pyrosequencing. PLoS ONE 8(6):e66588CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Tang YQ, Li Y, Zhao JY, Chi CQ, Huang LX, Dong HP, Wu XL (2012) Microbial communities in long-term, water-flooded petroleum reservoirs with different in situ temperatures in the Huabei Oilfield, China. PLoS ONE 7(3):e33535CrossRefPubMedCentralPubMedGoogle Scholar
  42. 42.
    Garcia JL, Ollivier B, Whitman WB (2006) The order Methanomicrobiales. Proc Natl Acad Sci U S A 3:208–230Google Scholar
  43. 43.
    Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M (2012) Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol 62(Pt 8):1902–1907CrossRefPubMedGoogle Scholar
  44. 44.
    Dridi B, Henry M, Richet H, Raoult D, Drancourt M (2012) Age-related prevalence of Methanomassiliicoccus luminyensis in the human gut microbiome. APMIS 120(10):773–777CrossRefPubMedGoogle Scholar
  45. 45.
    Borrel G, Harris HM, Parisot N, Gaci N, Tottey W, Mihajlovski A, Deane J, Gribaldo S, Bardot O, Peyretaillade E, Peyret P, O’Toole PW, Brugere JF (2013) Genome sequence of “Candidatus Methanomassiliicoccus intestinalis” Issoire-Mx1, a third Thermoplasmatales-related methanogenic Archaeon from human feces. Genome Announc 1(4):e00453–13CrossRefPubMedCentralPubMedGoogle Scholar
  46. 46.
    Casamayor EO, Triado-Margarit X, Castaneda C (2013) Microbial biodiversity in saline shallow lakes of the Monegros Desert, Spain. FEMS Microbiol Ecol 85(3):503–518CrossRefPubMedGoogle Scholar
  47. 47.
    Nunoura T, Oida H, Nakaseama M, Kosaka A, Ohkubo SB, Kikuchi T, Kazama H, Hosoi-Tanabe S, Nakamura K, Kinoshita M, Hirayama H, Inagaki F, Tsunogai U, Ishibashi J, Takai K (2009) Archaeal diversity and distribution along thermal and geochemical gradients in hydrothermal sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa trough. Appl Environ Microbiol 76(4):1198–1211CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Nunoura T, Takaki Y, Kazama H, Hirai M, Ashi J, Imachi H, Takai K (2012) Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes Environ 27(4):382–390CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Balcazar JL, Schneider D, Arp G, Reimer A, Reitner J, Daniel R (2013) Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific. PLoS ONE 8(6):e66662CrossRefGoogle Scholar
  50. 50.
    Hugoni M, Taib N, Debroas D, Domaizon I, Jouan Dufournel I, Bronner G, Salter I, Agogue H, Mary I, Galand PE (2013) Structure of the rare archaeal biosphere and seasonal dynamics of active ecotypes in surface coastal waters. Proc Natl Acad Sci U S A 110(15):6004–6009CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Grosskopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64(3):960–969PubMedCentralPubMedGoogle Scholar
  52. 52.
    Baker BJ, Tyson GW, Webb RI, Flanagan J, Hugenholtz P, Allen EE, Banfield JF (2006) Lineages of acidophilic archaea revealed by community genomic analysis. Science 314(5807):1933–1935CrossRefPubMedGoogle Scholar
  53. 53.
    Baker BJ, Comolli LR, Dick GJ, Hauser LJ, Hyatt D, Dill BD, Land ML, Verberkmoes NC, Hettich RL, Banfield JF (2010) Enigmatic, ultrasmall, uncultivated Archaea. Proc Natl Acad Sci USA 107(19):8806–8811CrossRefPubMedCentralPubMedGoogle Scholar
  54. 54.
    Teske A, Sorensen KB (2008) Uncultured archaea in deep marine subsurface sediments: have we caught them all? ISME J 2(1):3–18CrossRefPubMedGoogle Scholar
  55. 55.
    Ionescu D, Penno S, Haimovich M, Rihtman B, Goodwin A, Schwartz D, Hazanov L, Chernihovsky M, Post AF, Oren A (2009) Archaea in the Gulf of Aqaba. FEMS Microbiol Ecol 69(3):425–438CrossRefPubMedGoogle Scholar
  56. 56.
    Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R (2008) Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 6(8):579–591CrossRefPubMedGoogle Scholar
  57. 57.
    Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ, Ferdelman TG, Kallmeyer J, Jørgensen BB, Aiello IW, Fry JC (2005) Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436(7049):390–394CrossRefPubMedGoogle Scholar
  58. 58.
    Kubo K, Lloyd KG, Biddle J, Amann R, Teske A, Knittel K (2012) Archaea of the miscellaneous Crenarchaeotal group are abundant, diverse and widespread in marine sediments. ISME J 6(10):1949–1965CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Kyohei Kuroda
    • 1
  • Masashi Hatamoto
    • 1
  • Nozomi Nakahara
    • 1
  • Kenichi Abe
    • 1
    • 2
  • Masanobu Takahashi
    • 2
  • Nobuo Araki
    • 3
  • Takashi Yamaguchi
    • 1
    Email author
  1. 1.Department of Environmental Systems EngineeringNagaoka University of TechnologyNagaokaJapan
  2. 2.Department of Civil and Environmental EngineeringTohoku UniversitySendaiJapan
  3. 3.Department of Civil EngineeringNagaoka National College of TechnologyNagaokaJapan

Personalised recommendations