Skip to main content

Spatiotemporal Analysis of Bacterial Diversity in Sediments of Sundarbans Using Parallel 16S rRNA Gene Tag Sequencing


The influence of temporal and spatial variations on the microbial community composition was assessed in the unique coastal mangrove of Sundarbans using parallel 16S rRNA gene pyrosequencing. The total sediment DNA was extracted and subjected to the 16S rRNA gene pyrosequencing, which resulted in 117 Mbp of data from three experimental stations. The taxonomic analysis of the pyrosequencing data was grouped into 24 different phyla. In general, Proteobacteria were the most dominant phyla with predominance of Deltaproteobacteria, Alphaproteobacteria, and Gammaproteobacteria within the sediments. Besides Proteobacteria, there are a number of sequences affiliated to the following major phyla detected in all three stations in both the sampling seasons: Actinobacteria, Bacteroidetes, Planctomycetes, Acidobacteria, Chloroflexi, Cyanobacteria, Nitrospira, and Firmicutes. Further taxonomic analysis revealed abundance of micro-aerophilic and anaerobic microbial population in the surface layers, suggesting anaerobic nature of the sediments in Sundarbans. The results of this study add valuable information about the composition of microbial communities in Sundarbans mangrove and shed light on possible transformations promoted by bacterial communities in the sediments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp PJ, Vacelet J, Webster N, Hentschel U, Taylor MW (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564–576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. 2.

    Godoy-Vitorino F, Goldfarb KC, Karaoz U, Leal S, Garcia-Amado MA, Hugenholtz P, Tringe SG, Brodie EL, Dominguez-Bello MG (2012) Comparative analyses of foregut and hindgut bacterial communities in hoatzins and cows. ISME J 6:531–541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. 3.

    Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103:12115–12120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. 4.

    Gomes NC, Cleary DF, Calado R, Costa R (2011) Mangrove bacterial richness. Commun Integr Biol 4:419–423

    Article  PubMed Central  PubMed  Google Scholar 

  5. 5.

    Alongi DM (1988) Bacterial productivity and microbial biomass in tropical mangrove sediments. Microb Ecol 15:59–79

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Holguin G, Gonzalez-Zamorano P, De-Bashan LE, Mendoza R, Amador E, Bashan Y (2006) Mangrove health in an arid environment encroached by urban development—a case study. Sci Total Environ 363:260–274

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Duke NC, Meynecke JO, Dittmann S, Ellison AM, Anger K, Berger U, Cannicci S, Diele K, Ewel KC, Field CD, Koedam N, Lee SY, Marchand C, Nordhaus I, Dahdouh-Guebas F (2007) A world without mangroves? Science 317:41–42

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Bouchez A, Pascault N, Chardon C, Bouvy M, Cecchi P, Lambs L, Herteman M, Fromard F, Got P, Leboulanger C (2013) Mangrove microbial diversity and the impact of trophic contamination. Mar Pollut Bull 66:39–46

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Feller IC, Lovelock CE, Berger U, McKee KL, Joye SB, Ball MC (2010) Biocomplexity in mangrove ecosystems. Ann Rev Mar Sci 2:395–417

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Glob Ecol Biogeogr 20:154–159

    Article  Google Scholar 

  11. 11.

    Gomes NC, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, Krogerrecklenfort E, Paranhos R, Mendonca-Hagler LC, Smalla K (2010) Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 74:276–290

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Ghosh A, Dey N, Bera A, Tiwari A, Sathyaniranjan K, Chakrabarti K, Chattopadhyay D (2010) Culture independent molecular analysis of bacterial communities in the mangrove sediment of Sundarban, India. Saline Syst 6:1

    Article  PubMed Central  PubMed  Google Scholar 

  13. 13.

    Yan B, Hong K, Yu ZN (2006) Archaeal communities in mangrove soil characterized by 16S rRNA gene clones. J Microbiol 44:566–571

    CAS  PubMed  Google Scholar 

  14. 14.

    Taketani RG, Yoshiura CA, Dias AC, Andreote FD, Tsai SM (2010) Diversity and identification of methanogenic archaea and sulphate-reducing bacteria in sediments from a pristine tropical mangrove. Antonie Van Leeuwenhoek 97:401–411

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Dias AC, Pereira Silva Mde EC, Cotta SR, Dini-Andreote F, Soares FL Jr, Salles JF, Azevedo JL, Van Elsas JD, Andreote FD (2012) Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments. Appl Environ Microbiol 78:7960–7967

    Article  PubMed Central  PubMed  Google Scholar 

  16. 16.

    Zhang Y, Dong J, Yang Z, Zhang S, Wang Y (2008) Phylogenetic diversity of nitrogen-fixing bacteria in mangrove sediments assessed by PCR-denaturing gradient gel electrophoresis. Arch Microbiol 190:19–28

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Marcial Gomes NC, Borges LR, Paranhos R, Pinto FN, Mendonca-Hagler LC, Smalla K (2008) Exploring the diversity of bacterial communities in sediments of urban mangrove forests. FEMS Microbiol Ecol 66:96–109

    Article  PubMed  Google Scholar 

  18. 18.

    Dos Santos HF, Cury JC, Do Carmo FL, Dos Santos AL, Tiedje J, Van Elsas JD, Rosado AS, Peixoto RS (2011) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS ONE 6:e16943

    Article  PubMed Central  PubMed  Google Scholar 

  19. 19.

    Peixoto R, Chaer GM, Carmo FL, Araujo FV, Paes JE, Volpon A, Santiago GA, Rosado AS (2011) Bacterial communities reflect the spatial variation in pollutant levels in Brazilian mangrove sediment. Antonie Van Leeuwenhoek 99:341–354

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Taketani RG, Franco NO, Rosado AS, van Elsas JD (2010) Microbial community response to a simulated hydrocarbon spill in mangrove sediments. J Microbiol 48:7–15

    Article  PubMed  Google Scholar 

  21. 21.

    Brito EM, Guyoneaud R, Goni-Urriza M, Ranchou-Peyruse A, Verbaere A, Crapez MA, Wasserman JC, Duran R (2006) Characterization of hydrocarbonoclastic bacterial communities from mangrove sediments in Guanabara Bay, Brazil. Res Microbiol 157:752–762

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Andreote FD, Jimenez DJ, Chaves D, Dias AC, Luvizotto DM, Dini-Andreote F, Fasanella CC, Lopez MV, Baena S, Taketani RG, de Melo IS (2012) The microbiome of Brazilian mangrove sediments as revealed by metagenomics. PLoS ONE 7:e38600

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. 23.

    Gilbert JA, Meyer F, Bailey MJ (2011) The future of microbial metagenomics (or is ignorance bliss?). ISME J 5:777–779

    Article  PubMed Central  PubMed  Google Scholar 

  24. 24.

    Manna S, Chaudhuri K, Bhattacharyya S, Bhattacharyya M (2010) Dynamics of Sundarban estuarine ecosystem: eutrophication induced threat to mangroves. Saline Syst 6:8

    Article  PubMed Central  PubMed  Google Scholar 

  25. 25.

    Nelson DW, Somers LE (1975) Organic carbon. Academic, London

    Google Scholar 

  26. 26.

    Black CA (1965) Methods of soil analysis. American Society of Agronomy, Wisconsin, USA

    Google Scholar 

  27. 27.

    Knudsen M (1901) Hydrographical tables. G.E.C, Gad Copenhagen

    Google Scholar 

  28. 28.

    Knap A, Michaels A, Close A, Ducklow H, Dickson A (eds.) (1996) Protocols for the Joint global ocean flux study (jgofs) core measurements

  29. 29.

    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. 30.

    Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:9

    Google Scholar 

  31. 31.

    Clark M (1998) Redox stratification and heavy metal partitioning in Avicennia-dominated mangrove sediments: a geochemical model. Chem Geol 149:147–171

    Article  CAS  Google Scholar 

  32. 32.

    Proctor LM (1997) Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods. Aquat Microb Ecol 12:105–113

    Article  Google Scholar 

  33. 33.

    Sauer JD, Shannon JG, Howe D, Hayes SF, Swanson MS, Heinzen RA (2005) Specificity of Legionella pneumophila and Coxiella burnetii vacuoles and versatility of Legionella pneumophila revealed by coinfection. Infect Immun 73:4494–4504

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. 34.

    Dang H, Li T, Chen M, Huang G (2007) Cross-ocean distribution of Rhodobacterales bacteria as primary surface colonizers in temperate coastal marine waters. Appl Environ Microbiol 74:52–60

    Article  PubMed Central  PubMed  Google Scholar 

  35. 35.

    Liang Q, Lloyd-Jones G (2010) Sphingobium scionense sp. nov., an aromatic hydrocarbon-degrading bacterium isolated from contaminated sawmill soil. Int J Syst Evol Microbiol 60:413–416

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Barua S, Tripathi S, Chakraborty A, Ghosh S, Chakrabarti K (2012) Characterization and crop production efficiency of diazotrophic bacterial isolates from coastal saline soils. Microbiol Res 167:95–102

    Article  PubMed  Google Scholar 

  37. 37.

    Wu J, Guan T, Jiang H, Zhi X, Tang S, Dong H, Zhang L, Li W (2009) Diversity of Actinobacterial community in saline sediments from Yunnan and Xinjiang, China. Extremophiles 13:623–632

    Article  PubMed  Google Scholar 

  38. 38.

    Arumugam M, Mitra A, Pramanik A, Saha M, Gachhui R, Mukherjee J (2010) Streptomyces Sundarbansensis sp. nov., an actinomycete that produces 2-allyloxyphenol. Int J Syst Evol Microbiol 61:2664–2669

    Article  PubMed  Google Scholar 

  39. 39.

    Dunbar J, Takala S, Barns SM, Davis JA, Kuske CR (1999) Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl Environ Microbiol 65:1662–1669

    PubMed Central  CAS  PubMed  Google Scholar 

  40. 40.

    Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75:5111–5120

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. 41.

    Schottner S, Pfitzner B, Grunke S, Rasheed M, Wild C, Ramette A (2011) Drivers of bacterial diversity dynamics in permeable carbonate and silicate coral reef sands from the Red Sea. Environ Microbiol 13:1815–1826

    Article  PubMed Central  PubMed  Google Scholar 

  42. 42.

    Bolhuis H, Stal LJ (2011) Analysis of bacterial and archaeal diversity in coastal microbial mats using massive parallel 16S rRNA gene tag sequencing. ISME J 5:1701–1712

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. 43.

    Derakshani M, Lukow T, Liesack W (2001) Novel bacterial lineages at the (sub)division level as detected by signature nucleotide-targeted recovery of 16S rRNA genes from bulk soil and rice roots of flooded rice microcosms. Appl Environ Microbiol 67:623–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. 44.

    Harris JK, Kelley ST, Pace NR (2004) New perspective on uncultured bacterial phylogenetic division OP11. Appl Environ Microbiol 70:845–849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. 45.

    Youssef NH, Blainey PC, Quake SR, Elshahed MS (2011) Partial genome assembly for a candidate division OP11 single cell from an anoxic spring (Zodletone Spring, Oklahoma). Appl Environ Microbiol 77:7804–7814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references


The authors would like to acknowledge the instrument facility provided by UGC-CAS, DST–FIST, DBT-IPLS, World Bank, ICZM project in the Department of Biochemistry, University of Calcutta, India. We acknowledge Mr. Tapas Paul, World Bank, for his continuous support and enthusiasm regarding our study in Sundarbans. The expenditure of this work and the research fellowships of P.B., S.N., A.B..., D.R., A.C., and R.P. were supported by the ICZM project, World Bank. A.G. was supported by Ramanujan Fellowship from the Department of Science and Technology, India (SR/S2/RJN-106/2012). The authors thank Ms. Anwesha Haldar, Department of Geography, University of Calcutta, for making a working map of the study sites in Sundarbans.

Author information



Corresponding authors

Correspondence to Abhrajyoti Ghosh, Dhrubajyoti Chattopadhyay or Maitree Bhattacharyya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Mean nutrient concentrations [Ammonia (NH4 +), Silicate (SiO4 4−), Phosphate (PO4 3−), Nitrate (NO3 ), Nitrite (NO2 ), and sulfate (SO4 2−)] at the sampling stations during December 2011 (A) and July 2012 (B). (GIF 22 kb)

Fig. S2

Principal Component Analysis of samples based on environmental parameters using PAST. Percentages of variation explained are indicated in each axis in parentheses. (GIF 6 kb)


(DOCX 13 kb)


(XLSX 11 kb)

High Resolution Image (TIFF 9237 kb)

High Resolution Image (TIFF 5552 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Basak, P., Majumder, N.S., Nag, S. et al. Spatiotemporal Analysis of Bacterial Diversity in Sediments of Sundarbans Using Parallel 16S rRNA Gene Tag Sequencing. Microb Ecol 69, 500–511 (2015).

Download citation


  • Sundarbans
  • Microbial diversity
  • 454-amplicon sequencing
  • 16S rRNA gene