Advertisement

Microbial Ecology

, Volume 69, Issue 3, pp 492–499 | Cite as

Bacterial Community Structure of Autotrophic Denitrification Biocathode by 454 Pyrosequencing of the 16S rRNA Gene

  • Yong Xiao
  • Yue Zheng
  • Song Wu
  • Zhao-Hui Yang
  • Feng Zhao
Environmental Microbiology

Abstract

Few studies have been conducted to explore the community composition in denitrifying biocathode. Herein, the microbial communities of denitrifying biocathodes yielding current of 1 mA (reactor C1) and 1.5 mA (reactor C2) were characterized by 454 pyrosequencing. The nitrate removal efficiencies in C1 and C2 were about 93 and 85 %, respectively. The optimization of data generated high-quality sequences of 18509 in C1 and 14857 in C2. Proteobacteria was the predominant phylum, and Bacteroidetes, Chloroflexi, and Planctomycetes were the subdominant groups. Classes of Alphaproteobacteria, Anaerolineae, and Phycisphaerae may benefit the performance of current production and nitrate removal. Twenty-nine dominant operational taxonomic units (OTUs) accounted for 64 and 65 % of sequences in C1 and C2, respectively. A denitrifying pathway was constructed based on the phylogenetic analysis and function inferring of the dominant OTUs. Obviously, the 454 pyrosequencing provided a high-resolution profile of bacteria community in denitrifying biocathode.

Keywords

Denitrification Proteobacteria Microbial Fuel Cell Nitrate Removal Chloroflexi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study was sponsored by the National Natural Science Foundation of China (51208490, 21177122) and the Natural Science Foundation of Fujian Province (2012J05105).

Supplementary material

248_2014_492_MOESM1_ESM.doc (31 kb)
Table A1 (DOC 2663 kb)
248_2014_492_MOESM2_ESM.doc (2.5 mb)
Table A2 (DOC 2574 kb)
248_2014_492_MOESM3_ESM.doc (106 kb)
Fig. A1 (DOC 105 kb)

References

  1. 1.
    Lee K-C, Rittmann BE (2002) Applying a novel autohydrogenotrophic hollow-fiber membrane biofilm reactor for denitrification of drinking water. Water Res 36:2040–2052CrossRefPubMedGoogle Scholar
  2. 2.
    Logan BE, Hamelers B, Rozendal R, Schrorder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192CrossRefPubMedGoogle Scholar
  3. 3.
    Morris JM, Fallgren PH, Jin S (2009) Enhanced denitrification through microbial and steel fuel-cell generated electron transport. Chem Engin J 153:37–42CrossRefGoogle Scholar
  4. 4.
    Puig S, Coma M, Desloover J, Boon N, Js C, Balaguer MD (2012) Autotrophic denitrification in microbial fuel cells treating low ionic strength waters. Environ Sci Technol 46:2309–2315CrossRefPubMedGoogle Scholar
  5. 5.
    Virdis B, Rabaey K, Rozendal RA, Yuan ZG, Keller J (2010) Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Res 44:2970–2980CrossRefPubMedGoogle Scholar
  6. 6.
    Virdis B, Rabaey K, Rozendal RA, Yuan Z, Mu Y, Keller J (2010) Simultaneous nitrification and denitrification (SND) at a microbial fuel cell (MFC) Biocathode. J Biotechnol 150:153–154CrossRefGoogle Scholar
  7. 7.
    Ahn CH, Oh H, Ki D, Van Ginkel SW, Rittmann BE, Park J (2009) Bacterial biofilm-community selection during autohydrogenotrophic reduction of nitrate and perchlorate in ion-exchange brine. Appl Microb Biot 81:1169–1177CrossRefGoogle Scholar
  8. 8.
    Park HI, Choi YJ, Pak D (2005) Autohydrogenotrophic denitrifying microbial community in a glass beads biofilm reactor. Biotechnol Let 27:949–953CrossRefGoogle Scholar
  9. 9.
    Zhang YH, Zhong FH, Xia SQ, Wang XJ, Li JX (2009) Autohydrogenotrophic denitrification of drinking water using a polyvinyl chloride hollow fiber membrane biofilm reactor. J Hazard Mater 170:203–209CrossRefPubMedGoogle Scholar
  10. 10.
    Van Ginkel SW, Lamendella R, Kovacik WP, Santo Domingo JW, Rittmann BE (2010) Microbial community structure during nitrate and perchlorate reduction in ion-exchange brine using the hydrogen-based membrane biofilm reactor (MBfR). Bioresour Technol 101:3747–3750CrossRefPubMedGoogle Scholar
  11. 11.
    Clauwaert P, Rabaey K, Aelterman P, De Schamphelaire L, Pham TH, Boeckx P, Boon N, Verstraete W (2007) Biological denitrification in microbial fuel cells. Environ Sci Technol 41:3354–3360CrossRefPubMedGoogle Scholar
  12. 12.
    Virdis B, Rabaey K, Yuan Z, Keller J (2008) Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res 42:3013–3024CrossRefPubMedGoogle Scholar
  13. 13.
    Wrighton KC, Virdis B, Clauwaert P, Read ST, Daly RA, Boon N, Piceno Y, Andersen GL, Coates JD, Rabaey K (2010) Bacterial community structure corresponds to performance during cathodic nitrate reduction. ISME J 4:1443–1455CrossRefPubMedGoogle Scholar
  14. 14.
    Quince C, Lanzen A, Curtis TP, Davenport RJ, Hall N, Head IM, Read LF, Sloan WT (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Meth 6:639–641CrossRefGoogle Scholar
  15. 15.
    Yang ZH, Xiao Y, Zeng G, Xu ZY, Liu YS (2007) Comparison of methods for total community DNA extraction and purification from compost. Appl Microb Biot 74:918–925CrossRefGoogle Scholar
  16. 16.
    Xiao Y, Zeng G-M, Yang Z-H, Ma Y-H, Huang C, Xu Z-Y, Huang J, Fan C-Z (2011) Changes in the actinomycetal communities during continuous thermophilic composting as revealed by denaturing gradient gel electrophoresis and quantitative PCR. Bioresour Technol 102:1383–1388CrossRefPubMedGoogle Scholar
  17. 17.
    Xiao Y, Zeng G-M, Yang Z-H, Ma Y-H, Huang C, Shi W-J, Xu Z-Y, Huang J, Fan C-Z (2011) Effects of continuous thermophilic composting (CTC) on bacterial community in the active composting process. Microb Ecol 62:599–608CrossRefPubMedGoogle Scholar
  18. 18.
    Xiao Y, Zeng G, Yang Z, Liu YS, Ma Y, Yang L, Wang R, Xu ZY (2009) Coexistence of nitrifiers, denitrifiers and Anammox bacteria in a sequencing batch biofilm reactor as revealed by PCR-DGGE. J Appl Microbiol 106:496–505CrossRefPubMedGoogle Scholar
  19. 19.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Xiao Y, Wu S, Yang Z-H, Wang Z-J, Yan C-Z, Zhao F (2013) In situ probing the effect of potentials on the microenvironment of heterotrophic denitrification biofilm with microelectrodes. Chemosphere 93:1295–1300CrossRefPubMedGoogle Scholar
  22. 22.
    Knowles R (1982) Denitrification. Microbiol Rev 46:43–70PubMedCentralPubMedGoogle Scholar
  23. 23.
    Mao YP, Xia Y, Zhang T (2013) Characterization of Thauera-dominated hydrogen-oxidizing autotrophic denitrifying microbial communities by using high-throughput sequencing. Bioresour Technol 128:703–710CrossRefPubMedGoogle Scholar
  24. 24.
    Chain P, Lamerdin J, Larimer F, Regala W, Lao V, Land M, Hauser L, Hooper A, Klotz M, Norton J (2003) Complete genome sequence of the ammonia-oxidizing bacterium and obligate chemolithoautotroph Nitrosomonas europaea. J Bacteriol 185:2759–2773CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616PubMedCentralPubMedGoogle Scholar
  26. 26.
    Abraham W-R, Strömpl C, Vancanneyt M, Bennasar A, Swings J, Lünsdorf H, Smit J, Moore ERB (2004) Woodsholea maritima gen. nov., sp. nov., a marine bacterium with a low diversity of polar lipids. Int J Syst Evol Microbiol 54:1227–1234CrossRefPubMedGoogle Scholar
  27. 27.
    Hiraishi A, Imhoff JF (2005) Rhodoplanes Hiraishi and Ueda 1994b, 671 VPBergey’s Manual® of Systematic Bacteriology. Springer, pp 545–549Google Scholar
  28. 28.
    Wang ET, van Berkum P, Sui XH, Beyene D, Chen WX, Martínez-Romero E (1999) Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. Int J Syst Bacteriol 49:51–65CrossRefPubMedGoogle Scholar
  29. 29.
    Aleem M, Alexander M (1958) Cell-free nitrification by Nitrobacter. J Bacteriol 76:510–514PubMedCentralPubMedGoogle Scholar
  30. 30.
    Hiraishi A (1997) Transfer of the bacteriochlorophyll b-containing phototrophic bacteria Rhodopseudomonas viridis and Rhodopseudomonas sulfoviridis to the genus Blastochloris gen. nov. Int J Syst Bacteriol 47:217–219CrossRefPubMedGoogle Scholar
  31. 31.
    Sperl GT, Hoare DS (1971) Denitrification with methanol: a selective enrichment for Hyphomicrobium species. J Bacteriol 108:733–736PubMedCentralPubMedGoogle Scholar
  32. 32.
    Lee M, Srinivasan S, Kim M (2010) New taxa in Alphaproteobacteria: Brevundimonas olei sp. nov., an esterase-producing bacterium. J Microbiol 48:616–622CrossRefPubMedGoogle Scholar
  33. 33.
    Wang L, Zheng P, Chen T, Chen J, Xing Y, Ji Q, Zhang M, Zhang J (2012) Performance of autotrophic nitrogen removal in the granular sludge bed reactor. Bioresour Technol 123:78–85CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute of Urban EnvironmentChinese Academy of SciencesXiamenChina
  2. 2.College of Environmental Science and EngineeringHunan UniversityChangshaChina

Personalised recommendations