Skip to main content
Log in

Broadscale Specificity in a Bark Beetle–Fungal Symbiosis: a Spatio-temporal Analysis of the Mycangial Fungi of the Western Pine Beetle

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Whether and how mutualisms are maintained through ecological and evolutionary time is a seldom studied aspect of bark beetle–fungal symbioses. All bark beetles are associated with fungi and some species have evolved structures for transporting their symbiotic partners. However, the fungal assemblages and specificity in these symbioses are not well known. To determine the distribution of fungi associated with the mycangia of the western pine beetle (Dendroctonus brevicomis), we collected beetles from across the insect’s geographic range including multiple genetically distinct populations. Two fungi, Entomocorticium sp. B and Ceratocystiopsis brevicomi, were isolated from the mycangia of beetles from all locations. Repeated sampling at two sites in Montana found that Entomocorticium sp. B was the most prevalent fungus throughout the beetle’s flight season, and that females carrying that fungus were on average larger than females carrying C. brevicomi. We present evidence that throughout the flight season, over broad geographic distances, and among genetically distinct populations of beetle, the western pine beetle is associated with the same two species of fungi. In addition, we provide evidence that one fungal species is associated with larger adult beetles and therefore might provide greater benefit during beetle development. The importance and maintenance of this bark beetle–fungus interaction is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation. MIT, Cambridge

    Google Scholar 

  2. Douglas AE (1998) Nutritional interactions in insect–microbial symbioses: aphids and their symbiotic bacteria Buchnera. Annu Rev Entomol 43:17–37. doi:10.1146/annurev.ento.43.1.17

    Article  CAS  PubMed  Google Scholar 

  3. Wilding N, Collins NM, Hammond PM, Webber JF (1989) Insect–fungus interactions. Academic, London

    Google Scholar 

  4. Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Annu Rev Ecol Evol Syst 36:563–595. doi:10.1146/annurev.ecolsys.36.102003.152626

    Article  Google Scholar 

  5. Six DL (2012) Ecological and evolutionary determinants of bark beetle–fungus symbioses. Insects 3(1):339–366

    Article  PubMed Central  PubMed  Google Scholar 

  6. Herre EA, Knowlton N, Mueller UG, Rehner SA (1999) The evolution of mutualisms: exploring the paths between conflict and cooperation. Trends Ecol Evol 14(2):49–53. doi:10.1016/S0169-5347(98)01529-8

    Article  PubMed  Google Scholar 

  7. Sachs JL, Mueller UG, Wilcox TP, Bull JJ (2004) The evolution of cooperation. Q Rev Biol 79(2):135–160. doi:10.1086/383541

    Article  PubMed  Google Scholar 

  8. Ferriere R, Bronstein JL, Rinaldi S, Law R, Gauduchon M (2002) Cheating and the evolutionary stability of mutualisms. Proc R Soc B Biol Sci 269(1493):773–780. doi:10.1098/rspb.2001.1900

    Article  Google Scholar 

  9. Ewald PW (1987) Transmission modes and evolution of the parasitism–mutualism continuum. Ann N Y Acad Sci 503:295–306. doi:10.1111/j.1749-6632.1987.tb40616.x

    Article  CAS  PubMed  Google Scholar 

  10. Moran NA (2007) Symbiosis as an adaptive process and source of phenotypic complexity. PNAS 104:8627–8633. doi:10.1073/pnas.0611659104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Clark MA, Moran NA, Baumann P, Wernegreen JJ (2000) Cospeciation between bacterial endosymbionts (Buchnera) and a recent radiation of aphids (Uroleucon) and pitfalls of testing for phylogenetic congruence. Evolution 54(2):517–525. doi:10.1554/0014-3820(2000)054[0517:Cbbeba]2.0.Co;2

    Article  CAS  PubMed  Google Scholar 

  12. Conord C, Despres L, Vallier A, Balmand S, Miquel C, Zundel S, Lemperiere G, Heddi A (2008) Long-term evolutionary stability of bacterial endosymbiosis in curculionoidea: additional evidence of symbiont replacement in the dryophthoridae family. Mol Biol Evol 25(5):859–868. doi:10.1093/molbev/msn027

    Article  CAS  PubMed  Google Scholar 

  13. Aanen DK, de Fine Licht HH, Debets AJ, Kerstes NA, Hoekstra RF, Boomsma JJ (2009) High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 326(5956):1103–1106. doi:10.1126/science.1173462

    Article  CAS  PubMed  Google Scholar 

  14. Janson EM, Stireman JO, Singer MS, Abbot P (2008) Phytophagous insect–microbe mutualisms and adaptive evolutionary diversification. Evolution 62(5):997–1012. doi:10.1111/j.1558-5646.2008.00348.x

    Article  PubMed  Google Scholar 

  15. Aanen DK, Eggleton P, Rouland-Lefevre C, Guldberg-Froslev T, Rosendahl S, Boomsma JJ (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. PNAS 99(23):14887–14892. doi:10.1073/pnas.222313099

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Mikheyev AS, Mueller UG, Abbot P (2006) Cryptic sex and many-to-one coevolution in the fungus-growing ant symbiosis. PNAS 103(28):10702–10706. doi:10.1073/pnas.0601441103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Mikheyev AS, Mueller UG, Boomsma JJ (2007) Population genetic signatures of diffuse co-evolution between leaf-cutting ants and their cultivar fungi. Mol Ecol 16(1):209–216. doi:10.1111/j.1365-294X.2006.03134.x

    Article  CAS  PubMed  Google Scholar 

  18. Mikheyev AS, Vo T, Mueller UG (2008) Phylogeography of post-Pleistocene population expansion in a fungus-gardening ant and its microbial mutualists. Mol Ecol 17(20):4480–4488. doi:10.1111/j.1365-294X.2008.03940.x

    Article  CAS  PubMed  Google Scholar 

  19. Mehdiabadi NJ, Mueller UG, Brady SG, Himler AG, Schultz TR (2012) Symbiont fidelity and the origin of species in fungus-growing ants. Nat Commun 3. doi:10.1038/Ncomms1844

  20. Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206. doi:10.1146/annurev.ento.42.1.179

    Article  CAS  PubMed  Google Scholar 

  21. Six DL, Klepzig KD (2004) Dendroctonus bark beetles as model systems for studies on symbiosis. Symbiosis 37(1–3):207–232

    Google Scholar 

  22. Harrington TC (2005) Ecology and evolution of mycophagous bark beetles and their fungal partners. In: Vega FE, Blackwell M (eds) Ecological and evolutionary advances in insect–fungal associations. Oxford University Press, Oxford, pp 257–291

    Google Scholar 

  23. Batra LR (1963) Ecology of ambrosia fungi and their dissemination by beetles. Trans Kans Acad Sci 66:213–236

    Article  Google Scholar 

  24. Yuceer C, Hsu CY, Erbilgin N, Klepzig KD (2011) Ultrastructure of the mycangium of the southern pine beetle, Dendroctonus frontalis (Coleoptera: Curculionidae, Scolytinae): complex morphology for complex interactions. Acta Zool-Stockholm 92(3):216–224. doi:10.1111/j.1463-6395.2011.00500.x

    Article  Google Scholar 

  25. Ayres MP, Wilkens RT, Ruel JJ, Lombardero MJ, Vallery E (2000) Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81(8):2198–2210. doi:10.2307/177108

    Article  Google Scholar 

  26. Bleiker KP, Six DL (2007) Dietary benefits of fungal associates to an eruptive herbivore: potential implications of multiple associates on host population dynamics. Environ Entomol 36(6):1384–1396. doi:10.1603/0046-225x(2007)36[1384:Dbofat]2.0.Co;2

    Article  CAS  PubMed  Google Scholar 

  27. Six DL, Paine TD (1997) Ophiostoma clavigerum is the mycangial fungus of the Jeffrey pine beetle, Dendroctonus jeffreyi. Mycologia 89(6):858–866. doi:10.2307/3761106

    Article  Google Scholar 

  28. Alamouti SM, Wang V, Diguistini S, Six DL, Bohlmann J, Hamelin RC, Feau N, Breuil C (2011) Gene genealogies reveal cryptic species and host preferences for the pine fungal pathogen Grosmannia clavigera. Mol Ecol 20(12):2581–2602. doi:10.1111/j.1365-294X.2011.05109.x

    Article  PubMed  Google Scholar 

  29. Roe AD, Rice AV, Coltman DW, Cooke JEK, Sperling FAH (2011) Comparative phylogeography, genetic differentiation and contrasting reproductive modes in three fungal symbionts of a multipartite bark beetle symbiosis. Mol Ecol 20(3):584–600. doi:10.1111/j.1365-294X.2010.04953.x

    Article  PubMed  Google Scholar 

  30. James PMA, Coltman DW, Murray BW, Hamelin RC, Sperling FAH (2011) Spatial genetic structure of a symbiotic beetle–fungal system: toward multi-taxa integrated landscape genetics. Plos One 6 (10). doi:ARTN e25359, DOI 10.1371/journal.pone.0025359

  31. Miller JM, Keen FP (1960) Biology and control of the western pine beetle: a summary of the first 50 years of research. U.S. Department of Agriculture, Washington, DC

    Google Scholar 

  32. Wood SL (1982) The bark and ambrosia beetles of North and Central America (Coleoptera: Scolytidae). Great Basin Nat 6:1–1359

    Google Scholar 

  33. Paine TD, Birch MC (1983) Acquisition and maintenance of mycangial fungi by Dendroctonus brevicomis Leconte (Coleoptera, Scolytidae). Environ Entomol 12(5):1384–1386

    Article  Google Scholar 

  34. Whitney HS, Cobb FW (1972) Non-staining fungi associated with bark beetle Dendroctonus brevicomis (Coleoptera:Scolytidae) on Pinus ponderosa. Can J Bot 50(9):1943–1945

    Article  Google Scholar 

  35. Hsiau PTW, Harrington TC (1997) Ceratocystiopsis brevicomi sp. nov., a mycangial fungus from Dendroctonus brevicomis (Coleoptera: Scolytidae). Mycologia 89(4):661–669. doi:10.2307/3761004

    Article  Google Scholar 

  36. Hsiau PTW, Harrington TC (2003) Phylogenetics and adaptations of basidiomycetous fungi fed upon by bark beetles (Coleoptera: Scolytidae). Symbiosis 34(2):111–131

    Google Scholar 

  37. Davis TS, Hofstetter RW, Klepzig KD, Foster JT, Keim P (2010) Interactions between multiple fungi isolated from two bark beetles, Dendroctonus brevicomis and Dendroctonus frontalis (Coleoptera: Curculionidae). J Yeast Fung Res 1:118–126

    Google Scholar 

  38. Klepzig KD, Hofstetter RW (2011) From attack to emergence: interactions between the southern pine beetle, mites, microbes, and trees. In: Coulson RN, Klepzig KD (eds) Southern pine beetle II. USDA Forest Service Gen. Tech. Rep. SRS-140, pp 141–152

  39. Bridges JR (1983) Mycangial fungi of Dendroctonus frontalis (Coleoptera, Scolytidae) and their relationship to beetle population trends. Environ Entomol 12(3):858–861

    Article  Google Scholar 

  40. Goldhammer DS, Stephen FM, Paine TD (1990) The effect of the fungi Ceratocystis minor (Hedgecock) Hunt, Ceratocystis minor (Hedgecock) Hunt var barrasii Taylor, and Sjb-122 on reproduction of the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera, Scolytidae). Can Entomol 122(5–6):407–418

    Article  Google Scholar 

  41. Coppedge BR, Stephen FM, Felton GW (1995) Variation in female southern pine beetle size and lipid content in relation to fungal associates. Can Entomol 127(2):145–154

    Article  Google Scholar 

  42. Hofstetter RW, Klepzig KD, Moser JC, Ayres MP (2006) Seasonal dynamics of mites and fungi and their interaction with southern pine beetle. Environ Entomol 35(1):22–30

    Article  Google Scholar 

  43. Kelley ST, Mitton JB, Paine TD (1999) Strong differentiation in mitochondrial DNA of Dendroctonus brevicomis (Coleoptera: Scolytidae) on different subspecies of ponderosa pine. Ann Entomol Soc Am 92(2):193–197

    Article  Google Scholar 

  44. Latta RG, Mitton JB (1999) Historical separation and present gene flow through a zone of secondary contact in ponderosa pine. Evolution 53(3):769–776. doi:10.2307/2640717

    Article  Google Scholar 

  45. Smith RH (1977) Monoterpenes of ponderosa pine xylem resin in western United States. USDA, For. Serv. Tech. Bull. No. 1532. 48 p

  46. Sturgeon KB (1979) Monoterpene variation in ponderosa pine xylem resin related to western pine beetle predation. Evolution 33(3):803–814. doi:10.2307/2407647

    Article  CAS  Google Scholar 

  47. Davis TS, Hofstetter RW (2012) Plant secondary chemistry mediates the performance of a nutritional symbiont associated with a tree-killing herbivore. Ecology 93(2):421–429

    Article  PubMed  Google Scholar 

  48. Hofstetter RW, Chen Z, Gaylord ML, McMillin JD, Wagner MR (2008) Synergistic effects of alpha-pinene and exo-brevicomin on pine bark beetles and associated insects in Arizona. J Appl Entomol 132(5):387–397. doi:10.1111/j.1439-0418.2007.01263.x

    Article  Google Scholar 

  49. Lee S, Kim JJ, Breuil C (2005) Leptographium longiclavatum sp nov., a new species associated with the mountain pine beetle, Dendroctonus ponderosae. Mycol Res 109:1162–1170. doi:10.1017/S0953756205003588

    Article  CAS  PubMed  Google Scholar 

  50. Roe AD, James PMA, Rice AV, Cooke JEK, Sperling FAH (2011) Spatial community structure of mountain pine beetle fungal symbionts across a latitudinal gradient. Microb Ecol 62(2):347–360. doi:10.1007/s00248-011-9841-8

    Article  PubMed Central  PubMed  Google Scholar 

  51. Biedermann PHW, Klepzig KD, Taborsky M, Six DL (2013) Abundance and dynamics of filamentous fungi in the complex ambrosia gardens of the primitively eusocial beetle Xyleborinus saxesenii Ratzeburg (Coleoptera: Curculionidae, Scolytinae). Fems Microbiol Ecol 83(3):711–723. doi:10.1111/1574-6941.12026

    Article  CAS  PubMed  Google Scholar 

  52. Lyon R (1958) A useful secondary sex character in Dendroctonus bark beetles. Can Entomol 90(10):582–584

    Article  Google Scholar 

  53. Davis TS, Hofstetter RW, Foster JT, Foote NE, Keim P (2011) Interactions between the yeast Ogataea pini and filamentous fungi associated with the western pine beetle. Microb Ecol 61(3):626–634. doi:10.1007/s00248-010-9773-8

    Article  PubMed  Google Scholar 

  54. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MD, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  55. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several cryptococcus species. J Bacteriol 172(8):4238–4246

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl Environ Microbiol 61(4):1323–1330

    PubMed Central  CAS  PubMed  Google Scholar 

  57. O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylo Evol 7(1):103–116. doi:10.1006/mpev.1996.0376

    Article  Google Scholar 

  58. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–780. doi:10.1093/molbev/mst010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21):2688–2690. doi:10.1093/bioinformatics/btl446

    Article  CAS  PubMed  Google Scholar 

  61. Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with image. J Biophoton Int 11(7):36–43

    Google Scholar 

  62. Box GEP, Cox DR (1964) An analysis of transformations. J Roy Stat Soc B 26(2):211–252

    Google Scholar 

  63. Davis TS, Hofstetter RW (2009) Effects of gallery density and species ratio on the fitness and fecundity of two sympatric bark beetles (Coleoptera: Curculionidae). Environ Entomol 38(3):639–650

    Article  CAS  PubMed  Google Scholar 

  64. Davis RS, Hood S, Bentz BJ (2012) Fire-injured ponderosa pine provide a pulsed resource for bark beetles. Can J For Res 42(12):2022–2036. doi:10.1139/X2012-147

    Article  Google Scholar 

  65. Honek A (1993) Intraspecific variation in body size and fecundity in insects: a general relationship. Oikos 66(3):483–492. doi:10.2307/3544943

    Article  Google Scholar 

  66. Six DL, Bentz BJ (2007) Temperature determines symbiont abundance in a multipartite bark beetle–fungus ectosymbiosis. Microb Ecol 54(1):112–118. doi:10.1007/s00248-006-9178-x

    Article  CAS  PubMed  Google Scholar 

  67. Moore ML (2013) The effects of temperature on fungal symbionts in the mountain pine beetle-fungus multi-partite symbiosis. M.S. thesis, University of Montana

  68. Addison AL, Powell JA, Six DL, Moore M, Bentz BJ (2013) The role of temperature variability in stabilizing the mountain pine beetle-fungus mutualism. J Theor Biol 335:40–50. doi:10.1016/j.jtbi.2013.06.012

    Article  CAS  PubMed  Google Scholar 

  69. Roe AD, Rice AV, Bromilow SE, Cooke JEK, Sperling FAH (2010) Multilocus species identification and fungal DNA barcoding: insights from blue stain fungal symbionts of the mountain pine beetle. Mol Ecol Resour 10(6):946–959. doi:10.1111/j.1755-0998.2010.02844.x

    Article  CAS  PubMed  Google Scholar 

  70. Lindner DL, Banik MT (2011) Intragenomic variation in the ITS rDNA region obscures phylogenetic relationships and inflates estimates of operational taxonomic units in genus Laetiporus. Mycologia 103(4):731–740. doi:10.3852/10-331

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research would have been impossible without the beetle collections made by many USDA Forest Service personnel and university faculty. Their names are listed in Table 1. We would also like to thank Jiri Hulcr for collecting southern pine beetles and Tom Harrington for providing reference cultures. A special thanks to Joseph Dysthe, Monica Gokey, and Trevor Lasher for assistance in the lab. We are grateful to Jeffrey Good, John McCutcheon, Mike Schwartz, Ylva Lekberg, and two anonymous reviewers for comments provided on earlier drafts which greatly improved this manuscript. This research was funded by the McIntire-Stennis Cooperative Forestry Program and supported by the NSF EPSCoR Montana Institute on Ecosystems.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan R. Bracewell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1

Haplotype distributions for Entomocorticium sp. B and C. brevicomi isolates (PDF 781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bracewell, R.R., Six, D.L. Broadscale Specificity in a Bark Beetle–Fungal Symbiosis: a Spatio-temporal Analysis of the Mycangial Fungi of the Western Pine Beetle. Microb Ecol 68, 859–870 (2014). https://doi.org/10.1007/s00248-014-0449-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0449-7

Keywords