Skip to main content

Advertisement

Log in

Plasmid-Related Quinolone Resistance Determinants in Epidemic Vibrio parahaemolyticus, Uropathogenic Escherichia coli, and Marine Bacteria from an Aquaculture Area in Chile

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Marine bacteria from aquaculture areas with industrial use of quinolones have the potential to pass quinolone resistance genes to animal and human pathogens. The VPA0095 gene, related to the quinolone resistance determinant qnrA, from clinical isolates of epidemic Vibrio parahaemolyticus conferred reduced susceptibility to quinolone after cloning into Escherichia coli K-12 either when acting alone or synergistically with DNA gyrase mutations. In addition, a plasmid-mediated quinolone resistance gene from marine bacteria, aac(6′)-Ib-cr, was identical to aac(6′)-Ib-cr from urinary tract isolates of E. coli, suggesting a recent flow of this gene between these bacteria isolated from different environments. aac(6′)-Ib-cr from E. coli also conferred reduced susceptibility to quinolone and kanamycin when cloned into E. coli K-12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Berge AC, Atwill ER, Sischo WM (2005) Animal and farm influences on the dynamics of antibiotic resistance in faecal Escherichia coli in young dairy calves. Prev Vet Med 69:25–38

    Article  CAS  PubMed  Google Scholar 

  2. Prescott JF (2006) History of antimicrobial usage in agriculture. In: Aarestrup FM (ed) Antimicrobial resistance in bacteria of animal origin, 1st edn. ASM Press, Washington, pp 19–27

    Google Scholar 

  3. Cox LA Jr, Ricci PF (2008) Causal regulations vs. political will: why human zoonotic infections increase despite precautionary bans on animal antibiotics. Environ Int 34:459–475

    Article  PubMed  Google Scholar 

  4. Marshall BM, Levy SB (2011) Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev 24:718–733

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J (2004) Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 53:28–52

    Article  CAS  PubMed  Google Scholar 

  6. Kloos WE, Ballard DN, Webster JA, Hubner RJ, Tomasz A, Couto I, Sloan GL, Dehart HP, Fiedler F, Schubert K, de Lencastre H, Sanches IS, Heath HE, Leblanc PA, Ljungh A (1997) Ribotype delineation and description of Staphylococcus sciuri subspecies and their potential as reservoirs of methicillin resistance and staphylolytic enzyme genes. Int J Syst Bacteriol 47:313–323

    Article  CAS  PubMed  Google Scholar 

  7. Wu S, Piscitelli C, de Lencastre H, Tomasz A (1996) Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb Drug Resist 2:435–441

    Article  CAS  PubMed  Google Scholar 

  8. Klare I, Heier H, Claus H, Bohme G, Marin S, Seltmann G, Hakenbeck R, Antanassova V, Witte W (1995) Enterococcus faecium strains with vanA-mediated high-level glycopeptide resistance isolated from animal foodstuffs and fecal samples of humans in the community. Microb Drug Resist 1:265–272

    Article  CAS  PubMed  Google Scholar 

  9. Bates J, Jordens Z, Selkon JB (1993) Evidence for an animal origin of vancomycin-resistant enterococci. Lancet 342:490–491

    Article  CAS  PubMed  Google Scholar 

  10. Molbak K (2005) Human health consequences of antimicrobial drug-resistant Salmonella and other foodborne pathogens. Clin Infect Dis 41:1613–1620

    Article  PubMed  Google Scholar 

  11. Heuer OE, Kruse H, Grave K, Collignon P, Karunasagar I, Angulo FJ (2009) Human health consequences of use of antimicrobial agents in aquaculture. Clin Infect Dis 49:1248–1253

    Article  PubMed  Google Scholar 

  12. Buschmann AH, Tomova A, Lopez A, Maldonado MA, Henriquez LA, Ivanova L, Moy F, Godfrey HP, Cabello FC (2012) Salmon aquaculture and antimicrobial resistance in the marine environment. PLoS One 7:e42724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Sapkota A, Sapkota AR, Kucharski M, Burke J, McKenzie S, Walker P, Lawrence R (2008) Aquaculture practices and potential human health risks: current knowledge and future priorities. Environ Int 34:1215–1226

    Article  PubMed  Google Scholar 

  14. Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dolz H, Millanao A, Buschmann AH (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 15:1917–1942

    Article  PubMed  Google Scholar 

  15. Saga T, Kaku M, Onodera Y, Yamachika S, Sato K, Takase H (2005) Vibrio parahaemolyticus chromosomal qnr homologue VPA0095: demonstration by transformation with a mutated gene of its potential to reduce quinolone susceptibility in Escherichia coli. Antimicrob Agents Chemother 49:2144–2145

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Poirel L, Liard A, Rodriguez-Martinez JM, Nordmann P (2005) Vibrionaceae as a possible source of Qnr-like quinolone resistance determinants. J Antimicrob Chemother 56:1118–1121

    Article  CAS  PubMed  Google Scholar 

  17. Poirel L, Rodriguez-Martinez JM, Mammeri H, Liard A, Nordmann P (2005) Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob Agents Chemother 49:3523–3525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Martinez-Martinez L, Pascual A, Jacoby GA (1998) Quinolone resistance from a transferable plasmid. Lancet 351:797–799

    Article  CAS  PubMed  Google Scholar 

  19. Nordmann P, Poirel L (2005) Emergence of plasmid-mediated resistance to quinolones in Enterobacteriaceae. J Antimicrob Chemother 56:463–469

    Article  CAS  PubMed  Google Scholar 

  20. Cambau E, Lascols C, Sougakoff W, Bebear C, Bonnet R, Cavallo JD, Gutmann L, Ploy MC, Jarlier V, Soussy CJ, Robert J (2006) Occurrence of qnrA-positive clinical isolates in French teaching hospitals during 2002–2005. Clin Microbiol Infect 12:1013–1020

    Article  CAS  PubMed  Google Scholar 

  21. Gonzalez-Escalona N, Cachicas V, Acevedo C, Rioseco ML, Vergara JA, Cabello F, Romero J, Espejo RT (2005) Vibrio parahaemolyticus diarrhea, Chile, 1998 and 2004. Emerg Infect Dis 11:129–131

    Article  PubMed Central  PubMed  Google Scholar 

  22. Wang H, Dzink-Fox JL, Chen M, Levy SB (2001) Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acrR mutations. Antimicrob Agents Chemother 45:1515–1521

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Bouanchaud DH, Scavizzi MR, Chabbert YA (1968) Elimination by ethidium bromide of antibiotic resistance in enterobacteria and staphylococci. J Gen Microbiol 54:417–425

    Article  CAS  PubMed  Google Scholar 

  24. Yoshida H, Bogaki M, Nakamura M, Nakamura S (1990) Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother 34:1271–1272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Dridi L, Tankovic J, Burghoffer B, Barbut F, Petit JC (2002) gyrA and gyrB mutations are implicated in cross-resistance to ciprofloxacin and moxifloxacin in Clostridium difficile. Antimicrob Agents Chemother 46:3418–3421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Zaiss NH, Witte W, Nubel U (2010) Fluoroquinolone resistance and Clostridium difficile, Germany. Emerg Infect Dis 16:675–677

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Chen DQ, Yang L, Luo YT, Mao MJ, Lin YP, Wu AW (2013) Prevalence and characterization of quinolone resistance in Laribacter hongkongensis from grass carp and Chinese tiger frog. J Med Microbiol 62:1559–1564

    Article  CAS  PubMed  Google Scholar 

  28. Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC (2006) Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 12:83–88

    Article  CAS  PubMed  Google Scholar 

  29. Martinez JL, Baquero F (2000) Mutation frequencies and antibiotic resistance. Antimicrob Agents Chemother 44:1771–1777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A (2009) Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 22:664–689

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Lenfest Ocean Program/Pew Charitable Trusts to F.C.C. and by a fellowship from the John Simon Guggenheim Foundation to F.C.C. that allowed him to begin to study antimicrobial use in aquaculture. We thank Dr. Romilio Espejo, Universidad de Chile, Santiago, Chile for V. parahaemolyticus strains. We thank Dr. Maria L. Rioseco, Hospital Regional de Puerto Montt, Chile, for the E. coli clinical isolates used in this study. Dr. D.C. Hooper, Massachusetts General Hospital, Boston, MA, USA, for J53AzR. We also thank Dr. Henry P. Godfrey for his important help for improving the text and Mrs. Harriett Harrison for preparation of the manuscript. We thank Mariya Sambir and Rene Devis for assistance with some experiments.

Authors’ contributions

SA identified the genes VPA0095 and aac(6′)-Ib-cr in V. parahaemolyticus and E. coli clinical isolates, respectively, cloned the genes, performed susceptibility tests, isolated the chromosomal mutant resistant to quinolones, cured plasmid, carried out DNA sequence analysis, and participated in manuscript drafting. LI and AT kept and studied antimicrobial susceptibility of marine bacteria, sequenced their aac(6′)-Ib-cr, and performed their DNA sequence analysis. FC obtained the funds for this work, planned the experiments, analyzed the data, and participated in manuscript drafting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felipe C. Cabello.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. S1

Detection by DNA hybridization of aac(6′)-Ib-cr gene in plasmid DNA from urinary tract isolates of E. coli resistant to quinolones. A. Plasmid DNA from E. coli clinical isolates. B. Plasmid DNA hybridization with a aac(6′)-Ib-cr probe. Lanes: 1. isolate 165; 2. isolate 110; 3. isolate 248; 4. isolate 435; 5. isolate 562; 6. isolate 146; 7. isolate 189; 8. isolate 580; 9. isolate 207; 10. isolate 204; 11. E. coli DH5α pUC19-aac(6′)-Ib-cr (positive control); 12. pBR328 (negative control) (PPTX 74 kb)

Table S1

(DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aedo, S., Ivanova, L., Tomova, A. et al. Plasmid-Related Quinolone Resistance Determinants in Epidemic Vibrio parahaemolyticus, Uropathogenic Escherichia coli, and Marine Bacteria from an Aquaculture Area in Chile. Microb Ecol 68, 324–328 (2014). https://doi.org/10.1007/s00248-014-0409-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-014-0409-2

Keywords

Navigation