Microbial Ecology

, Volume 68, Issue 2, pp 284–298 | Cite as

Ecology of Testate Amoebae in an Amazonian Peatland and Development of a Transfer Function for Palaeohydrological Reconstruction

  • Graeme T. SwindlesEmail author
  • Monika Reczuga
  • Mariusz Lamentowicz
  • Cassandra L. Raby
  • T. Edward Turner
  • Dan J. Charman
  • Angela Gallego-Sala
  • Elvis Valderrama
  • Christopher Williams
  • Frederick Draper
  • Euridice N. Honorio Coronado
  • Katherine H. Roucoux
  • Tim Baker
  • Donal J. Mullan
Environmental Microbiology


Tropical peatlands represent globally important carbon sinks with a unique biodiversity and are currently threatened by climate change and human activities. It is now imperative that proxy methods are developed to understand the ecohydrological dynamics of these systems and for testing peatland development models. Testate amoebae have been used as environmental indicators in ecological and palaeoecological studies of peatlands, primarily in ombrotrophic Sphagnum-dominated peatlands in the mid- and high-latitudes. We present the first ecological analysis of testate amoebae in a tropical peatland, a nutrient-poor domed bog in western (Peruvian) Amazonia. Litter samples were collected from different hydrological microforms (hummock to pool) along a transect from the edge to the interior of the peatland. We recorded 47 taxa from 21 genera. The most common taxa are Cryptodifflugia oviformis, Euglypha rotunda type, Phryganella acropodia, Pseudodifflugia fulva type and Trinema lineare. One species found only in the southern hemisphere, Argynnia spicata, is present. Arcella spp., Centropyxis aculeata and Lesqueresia spiralis are indicators of pools containing standing water. Canonical correspondence analysis and non-metric multidimensional scaling illustrate that water table depth is a significant control on the distribution of testate amoebae, similar to the results from mid- and high-latitude peatlands. A transfer function model for water table based on weighted averaging partial least-squares (WAPLS) regression is presented and performs well under cross-validation (r\(^{2}_{apparent} \,=\, 0.76, \text {RMSE} \,=\, 4.29; \mathrm {r}^{2}_{jack} \,=\, 0.68, \text {RMSEP} \,=\, 5.18\)). The transfer function was applied to a 1-m peat core, and sample-specific reconstruction errors were generated using bootstrapping. The reconstruction generally suggests near-surface water tables over the last 3,000 years, with a shift to drier conditions at c. cal. 1218-1273 AD.


Canonical Correspondence Analysis Supplementary File Water Table Depth Transfer Function Model Peat Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was funded by a Royal Society research grant to GTS (grant no. 481831). Radiocarbon dates were provided by the UK NERC Radiocarbon Laboratory allocation number 1681.1012 to DJC and AGS. We thank Outi L¨ahteenoja for advice on accessing the Aucayacu peatland and Ricardo Farroñay Peramas and Denis del Castillo Torres of the Instituto de Investigaciones de la Amazon´ıa Peruana in Iquitos for assisting with fieldwork planning. Aristidis Vasques is acknowledged for piloting the boats and helping us run the field campaign. Many thanks to the villagers of Bellavista and Malvinas for assistance in the field (especially Lucho Freyre and David Huayaban). Scanning electron micrographs (SEM) were taken in The Scanning Microscopy and Microanalysis Laboratory, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University. We kindly thank Monika Lutynska for technical support. Monika Reczuga would also like to thank Katarzyna Marcisz for assisting with the identification of testate amoebae.

Supplementary material

248_2014_378_MOESM1_ESM.xls (101 kb)
(XLS 104 KB)
248_2014_378_MOESM2_ESM.jpg (20.4 mb)
(JPG 20.3 MB)
248_2014_378_MOESM3_ESM.pdf (618 kb)
(PDF 620 KB)
248_2014_378_MOESM4_ESM.docx (14 kb)
(DOC 16.0 KB)
248_2014_378_MOESM5_ESM.xlsx (13 kb)
(XLS 16.0 KB)
248_2014_378_MOESM6_ESM.pdf (687 kb)
(PDF 688 KB)
248_2014_378_MOESM7_ESM.xlsx (11 kb)
(XLS 12.0 KB)


  1. 1.
    Charman DJ (2002) Peatlands and environmental change. Wiley-BlackwellGoogle Scholar
  2. 2.
    Holden J (2005) Peatland hydrology and carbon release: why small-scale process matters. Philos Trans R Soc A Math Phys Eng Sci 363:2891–2913CrossRefGoogle Scholar
  3. 3.
    Belyea LR, Baird AJ (2006) Beyond the limits to peat bog growth: cross-scale feedback in peatland development. Ecol Monogr 76:299–322CrossRefGoogle Scholar
  4. 4.
    Page S E, Rieley J O, Banks B G (2008) Global and regional importance of the tropical peatland carbon pool. Glob Chang Biol 17:798–818CrossRefGoogle Scholar
  5. 5.
    Moore S, Evans C D, Page S E, Garnett M H, Jones T, Freeman C, Hooijer A, Wiltshire A J, Limin S H, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493:660–663CrossRefPubMedGoogle Scholar
  6. 6.
    Anderson JAR (1964) The structure and development of the peat swamps of Sarawak and Brunei. J Trop Geogr 18:7–16Google Scholar
  7. 7.
    Joosten H (2009) The global peatland CO 2 picture. Wetlands international. Ede: 33pGoogle Scholar
  8. 8.
    Lähteenoja O, Ruokolainen K, Schulman L, Alvarez J (2009) Amazonian floodplains harbour minerotrophic and ombrotrophic peatlands. Catena 79:140–145CrossRefGoogle Scholar
  9. 9.
    Lähteenoja O, Ruokolainen K, Schulman L, Oinonen M (2009) Amazonian peatlands: an ignored C sink and potential source. Glob Chang Biol 15:2311–2320CrossRefGoogle Scholar
  10. 10.
    Lähteenoja O, Page S E (2011) High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia. J Geophys Res 116:G02025Google Scholar
  11. 11.
    Lähteenoja O, Reategui Y, Rasanen M, del Castillo D, Oinonen M, Page SE (2012) The large Amazonian peatland carbon sink in the subsiding astaza-Marañón foreland basin, Peru. Glob Chang Biol 18:164–178CrossRefGoogle Scholar
  12. 12.
    Lähteenoja O, Flores B, Nelson B (2013) Tropical peat accumulation in Central Amazonia. Wetlands 33:495–503CrossRefGoogle Scholar
  13. 13.
    Page S E, Siegert F, Rieley J O, Boehm H D V, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia in 1997. Nature 420:61–65CrossRefPubMedGoogle Scholar
  14. 14.
    Miettinen J, Shi C, Liew SC (2012) Two decades of destruction in Southeast Asia’s peat swamp forests. Front Ecol Environ 10:124–128CrossRefGoogle Scholar
  15. 15.
    Mitchell E A D, Charman D J, Warner B G (2008) Testate amoebae analysis in ecological and paleoecological studies of wetlands: past, present and future. Biodivers Conserv 17:2115–2137CrossRefGoogle Scholar
  16. 16.
    Woodland WA, Charman DJ, Sims PC (1998) Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae. The Holocene 8:261–273CrossRefGoogle Scholar
  17. 17.
    Lamentowicz M, Mitchell E A D (2005) The ecology of testate amoebae (Protists) in sphagnum in North-western Poland in relation to peatland ecology. Microb Ecol 50(1):48–63CrossRefPubMedGoogle Scholar
  18. 18.
    Charman DJ, Blundell A, ACCROTELM Members (2007) A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. J Quat Sci 22:209–221CrossRefGoogle Scholar
  19. 19.
    Swindles G T, Charman D J, Roe H M, Sansum P A (2009) Environmental controls on peatland testate amoebae (Protozoa: Rhizopoda) in the North of Ireland: implications for Holocene palaeoclimate studies. J Paleolimnol 42:123–140CrossRefGoogle Scholar
  20. 20.
    Turner TE, Swindles GT, Charman DJ, Blundell A (2013) Comparing regional and supra-regional transfer functions for palaeohydrological reconstruction from Holocene peatlands. Palaeogeogr Palaeoclimatol Palaeoecol 369:395–408CrossRefGoogle Scholar
  21. 21.
    Amesbury M J, Mallon G, Charman D J, Hughes P D, Booth R K, Daley T J, Garneau M (2013) Statistical testing of a new testate amoebae transfer function for water-table depth reconstruction on ombrotrophic peatlands in Atlantic Canada and far north-eastern United States. J Quat Sci 28:27–39CrossRefGoogle Scholar
  22. 22.
    Lamarre A, Magnan G, Garneau M, Boucher E (In Press) A testate amoeba-based transfer function for paleohydrological reconstruction from boreal and subarctic peatlands in northeastern Canada. Quat IntGoogle Scholar
  23. 23.
    Bobrov A A (2001) Findings of the tropical group testate amoebae (Protozoa: Testacea) at the far East (Sikhote Alin reserve). Biol Bull Russ Acad Sci 28:401–407CrossRefGoogle Scholar
  24. 24.
    Krashevska V, Bonkowski M, Maraun M, Scheu S (2007) Testate amoebae (protista) of an elevational gradient in the tropical mountain rain forest of Ecuador. Pedobiologia 51:319–331CrossRefGoogle Scholar
  25. 25.
    Krashevska V, Maraun M, Scheu S (2012) How does litter quality affect the community of soil protists (testate amoebae) of tropical montane rainforests?. FEMS Microbiol Ecol 80:603–607CrossRefPubMedGoogle Scholar
  26. 26.
    Martinez R, Ruiz D, Andrade M, Blacutt L, Pabon D, Jaimes E, Leon G, Villacis M, Quintana J, Montealegre E, Euscategui CH, Jorgensen PM (2011) Synthesis of the climate of the Tropical Andes. In: Herzog SK, Martinez R, Tiessen H (eds) Climate change and biodiversity in the Tropical Andes. MacArthur Foundation, Inter-American Institute of Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE), vol 348. Sao Jose dos Campos, Paris, pp 97–109. ISBN: 978-85-99875-05-6Google Scholar
  27. 27.
    Met Office (2011) Climate: observations, projections and impacts. Peru, Met Office. ExeterGoogle Scholar
  28. 28.
    Jowsey PC (1966) An improved peat sampler. New Phytol 65:245–248CrossRefGoogle Scholar
  29. 29.
    De Vleeschouwer F, Chambers F M, Swindles G T (2010) Coring and sub-sampling of peatlands for palaeoenvironmental research. Mires Peat 7:1–10Google Scholar
  30. 30.
    Schulte EE, Hopkins BG (1996) Estimation of soil organic matter by weight-loss-on-ignition. In: FR Magdoff et al. (eds) Soil organic matter: analysis and interpretation. SSSA Spec. Publ. 46, Madison, WIGoogle Scholar
  31. 31.
    Hendon D, Charman D J (1997) The preparation of testate amoebae (Protozoa: Rhizopoda) samples from peat. The Holocene 7:199–205CrossRefGoogle Scholar
  32. 32.
    Payne R (2009) The standard preparation method for testate amoebae leads to selective loss of the smallest shells. Quat Newsl 119:16–20Google Scholar
  33. 33.
    Payne R, Mitchell E (2009) How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J Paleolimnol 42:483–495CrossRefGoogle Scholar
  34. 34.
    Charman D J, Hendon D, Woodland W (2000) The identification of peatland testate amoebae. Quat Res Assoc Tech Guid 9:147pGoogle Scholar
  35. 35.
    Ogden CG, Hedley RH (eds) (1980) An atlas to freshwater testate amoebae. Oxford University Press, LondonGoogle Scholar
  36. 36.
    Mazei Y, Tsyganov A N (2006) Freshwater testate amoebae. KMK, MoscowGoogle Scholar
  37. 37.
    Meisterfeld R (2000) Arcellinida. The illustrated guide to the protozoa, 2nd edn, pp 827–859Google Scholar
  38. 38.
    Meisterfeld R (2000) Testate amoebae with filopodia. The illustrated guide to the protozoa, 2nd edn, pp 1054–1083Google Scholar
  39. 39.
    Swindles G T (2010) Dating recent peat profiles using spheroidal carbonaceous particles (SCPs). Mires Peat 7:1–10Google Scholar
  40. 40.
    Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  41. 41.
    Dale B, Dale A L (2002) Application of ecologically based statistical treatments to micropalaeontology. In: Haslett S K (ed) Quaternary environmental micropalaeontology. Arnold, LondonGoogle Scholar
  42. 42.
    Rao CR (1995) A review of canonical coordinates and an alternative to correspondence analysis using Hellinger distance. Qüestiió 19:23–63Google Scholar
  43. 43.
    Legendre P, Gallagher E (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280CrossRefGoogle Scholar
  44. 44.
    Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29, 115–129CrossRefGoogle Scholar
  45. 45.
    McCune B, Grace JB (2002) Analysis of ecological communities. MJM PressGoogle Scholar
  46. 46.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Henry M, Stevens H, Wagner H (2012) vegan: Community Ecology Package.
  47. 47.
    Core Team R (2012) R: A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria,
  48. 48.
    Shannon C E (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423,623–656CrossRefGoogle Scholar
  49. 49.
    Magurran A E (1988) Ecological diversity and its measurement. Princeton University Press, PrincetonCrossRefGoogle Scholar
  50. 50.
    Patterson R T, Kumar A (2000) Assessment of arcellacea (thecamoebian) assemblages, species and strains as contaminant indicators in variably contaminated James Lake, North Eastern Ontario. J Foramin Res 30:310–320CrossRefGoogle Scholar
  51. 51.
    Birks H J B (1995) Quantitative palaeoenvironmental reconstructions. In: Maddy D, Brew J S (eds) Statistical modelling of quaternary science data. Technical guide 5. Quaternary Research Association, CambridgeGoogle Scholar
  52. 52.
    Juggins S (2003) C2 user guide. Software for ecological and palaeoecological data analysis and visualisation. University of Newcastle, Newcastle Upon TyneGoogle Scholar
  53. 53.
    Birks HJB, Line JM, Juggins S, Stevenson AC, ter Braak CJF (1990) Diatoms and pH reconstruction. Phil Trans R Soc B 27:263–278CrossRefGoogle Scholar
  54. 54.
    Line JM, ter Braak CJF, Birks HJB (1994) WACALIB version 3.3: a computer program to reconstruct environmental variables from fossil assemblages by weighted-averaging and to derive sample-specific errors of prediction. J Paleolimnol 10:147–152CrossRefGoogle Scholar
  55. 55.
    Ivanov K E (1981) Water movement in Mirelands. Academic Press, LondonGoogle Scholar
  56. 56.
    Deflandre G (1936) Etude monographique sur le genre Nebela Leidy. Annales de Protistologie 5:201–286Google Scholar
  57. 57.
    Sullivan M E, Booth R K (2011) The potential influence of short-term environmental variability on the composition of testate amoeba communities in Sphagnum peatlands. Microb Ecol 62:80–93CrossRefPubMedGoogle Scholar
  58. 58.
    Turner T E, Swindles G T (2012) Ecology of testate amoebae in moorland with a complex fire history: implications for ecosystem monitoring and sustainable land management. Protist 163:844–855CrossRefPubMedGoogle Scholar
  59. 59.
    Booth R K, Zygmunt J R (2005) Biogeography and comparative ecology of testate amoebae inhabiting Sphagnum-dominated peatlands in the Great Lakes and Rocky Mountain regions of North America. Divers Distrib 11:577–590CrossRefGoogle Scholar
  60. 60.
    Bobrov A A, Yazvenko S B, Warner B G (1995) Taxonomic and ecological implications of shell morphology of three testaceans (Protozoa: Rhizopoda) in Russia and Canada. Archiv für Protistenkunde 145:119–126Google Scholar
  61. 61.
    Roucoux K H, Lawson I T, Jones T D, Baker T R, Coronado E N H, Gosling W D, Lähteenoja O (2013) Vegetation development in an Amazonian peatland. Palaeogeogr Palaeoclimatol Palaeoecol 374:242–255CrossRefGoogle Scholar
  62. 62.
    Wilmshurst J M, Wiser S K, Charman D J (2003) Reconstructing Holocene water tables in New Zealand using testate amoebae: differential preservation of tests and implications for the use of transfer functions. The Holocene 13:61–72CrossRefGoogle Scholar
  63. 63.
    Swindles GT, Roe HM (2007) Examining the dissolution characteristics of testate amoebae (Protozoa: Rhizopoda) in low pH conditions: implications for peatland palaeoclimate studies. Palaeogeogr Palaeoclimatol Palaeoecol 252:486–496CrossRefGoogle Scholar
  64. 64.
    Mitchell E, Payne R, Lamentowicz M (2008) Potential implications of differential preservation of testate amoeba shells for paleoenvironmental reconstruction in peatlands. J Paleolimnol 40:603–618CrossRefGoogle Scholar
  65. 65.
    Frolking S, Roulet NT, Tuittila E, Bubier JL, Quillet A, Talbot J, Richard PJH (2010) A new model of Holocene peatland net primary production, decomposition, water balance, and peat accumulation. Earth Syst Dyn 1:1–21CrossRefGoogle Scholar
  66. 66.
    Morris PJ, Belyea LR, Baird AJ (2011) Ecohydrological feedbacks in peatland development: a theoretical modelling study. J Ecol 99:1190–1201CrossRefGoogle Scholar
  67. 67.
    Kurnianto S (2013) Modeling carbon accumulation dynamics in tropical peat swamp forests (abstract), New frontiers in tropical biology: the next 50 years (A Joint Meeting of ATBC and OTS)Google Scholar
  68. 68.
    Swindles G T, Morris P J, Baird A J, Blaauw M, Plunkett G (2012) Ecohydrological feedbacks confound peat-based climate reconstructions. Geophys Res Lett 39:L11401CrossRefGoogle Scholar
  69. 69.
    Bush MB, Colinvaux PA (1988) A 7,000-year pollen record from the Amazon lowlands, Ecuador. Vegetatio 76:141–154Google Scholar
  70. 70.
    Frost I (1988) A Holocene sedimentary record from Anañgucocha in the Ecuadorian Amazon. Ecology 69:66–73CrossRefGoogle Scholar
  71. 71.
    Liu KB, Colinvaux PA (1988) A 5,200-year history of Amazon rain forest. J Biogeogr 15:231–248CrossRefGoogle Scholar
  72. 72.
    Behling H, Berrio J, Hooghiemstra H (1999) Late Quaternary pollen records from the middle Caquetá river basin in central Columbian Amazon. Palaeogeogr Palaeoclimatol Palaeoecol 145:193–213CrossRefGoogle Scholar
  73. 73.
    Correa-Metrio A, Cabrera KR, Bush MB (2010) Quantifying ecological change through discriminant analysis: a palaeoecological example from the Peruvian Amazon. J Veg Sci 21:695–704Google Scholar
  74. 74.
    Hoorn C, Wesselingh F P, ter Steege H, Bermudez M A, Mora A, Sevink J, Sanmartin I, Sanchez-Meseguer A, Anderson C L, Figueiredo J P, Jaramillo C, Riff D, Negri F R, Hooghiemstra H, Lundberg J, Stadler T, Sarkinen T, Antonelli A (2010) Amazonia through time: andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Graeme T. Swindles
    • 1
    Email author
  • Monika Reczuga
    • 2
    • 3
  • Mariusz Lamentowicz
    • 2
  • Cassandra L. Raby
    • 4
    • 5
  • T. Edward Turner
    • 1
  • Dan J. Charman
    • 6
  • Angela Gallego-Sala
    • 6
  • Elvis Valderrama
    • 7
  • Christopher Williams
    • 1
  • Frederick Draper
    • 1
  • Euridice N. Honorio Coronado
    • 1
  • Katherine H. Roucoux
    • 1
  • Tim Baker
    • 1
  • Donal J. Mullan
    • 8
  1. 1.School of GeographyUniversity of LeedsLeedsUK
  2. 2.Department of Biogeography and Laboratory of Wetland Ecology and MonitoringAdam Mickiewicz UniversityPoznańPoland
  3. 3.Faculty of BiologyAdam Mickiewicz UniversityPoznańPoland
  4. 4.Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
  5. 5.Institute of ZoologyZoological Society of LondonLondonUK
  6. 6.Geography, College of Life and Environmental SciencesUniversity of ExeterExeterUK
  7. 7.Putumayo Cdra. 24IquitosPeru
  8. 8.School of Natural Sciences and PsychologyLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations