Persistence and Recycling of Bioinsecticidal Bacillus thuringiensis subsp. israelensis Spores in Contrasting Environments: Evidence from Field Monitoring and Laboratory Experiments

Abstract

Sprays of commercial preparations of the bacterium Bacillus thuringiensis subsp. israelensis are widely used for the control of mosquito larvae. Despite an abundant literature on B. thuringiensis subsp. israelensis field efficiency on mosquito control, few studies have evaluated the fate of spores in the environment after treatments. In the present article, two complementary experiments were conducted to study the effect of different parameters on B. thuringiensis subsp. israelensis persistence and recycling, in field conditions and in the laboratory. First, we monitored B. thuringiensis subsp. israelensis persistence in the field in two contrasting regions in France: the Rhône-Alpes region, where mosquito breeding sites are temporary ponds under forest cover with large amounts of decaying leaf matter on the ground and the Mediterranean region characterized by open breeding sites such as brackish marshes. Viable B. thuringiensis subsp. israelensis spores can persist for months after a treatment, and their quantity is explained both by the vegetation type and by the number of local treatments. We found no evidence of B. thuringiensis subsp. israelensis recycling in the field. Then, we tested the effect of water level, substrate type, salinity and presence of mosquito larvae on the persistence/recycling of B. thuringiensis subsp. israelensis spores in controlled laboratory conditions (microcosms). We found no effect of change in water level or salinity on B. thuringiensis subsp. israelensis persistence over time (75 days). B. thuringiensis subsp. israelensis spores tended to persist longer in substrates containing organic matter compared to sand-only substrates. B. thuringiensis subsp. israelensis recycling only occurred in presence of mosquito larvae but was unrelated to the presence of organic matter.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Abdul-Ghani R, Al-Mekhlafi AM, Alabsi MS (2012) Microbial control of malaria: biological warfare against the parasite and its vector. Acta Trop 121:71–84

    Article  PubMed  Google Scholar 

  2. 2.

    Lacey LA (2007) Bacillus thuringiensis serovariety israelensis and Bacillus sphaericus for mosquito control. J Am Mosq Control Assoc 23:133–163

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Vachon V, Laprade R, Schwartz JL (2012) Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J Invertebr Pathol 111:1–12

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Mulla MS, Chaney JD, Rodchareon J (1993) Elevated dosages of Bacillus thuringiensis var. israelensis fail to extend control of Culex larvae. Bull Soc Vect Ecol 18:125–132

    Google Scholar 

  5. 5.

    Ritchie SA, Rapley LP, Benjamin S (2010) Bacillus thuringiensis var. israelensis (Bti) provides residual control of Aedes aegypti in small containers. Am J Trop Med Hyg 82:1053–1059

    PubMed Central  Article  PubMed  Google Scholar 

  6. 6.

    Vilarinhos PTR, Monnerat R (2004) Larvicidal persistence of formulations of Bacillus thuringiensis var. israelensis to control larval Aedes aegypti. J Am Mosq Control Assoc 20:311–314

    PubMed  Google Scholar 

  7. 7.

    Christiansen JA, McAbee RD, Stanich MA, DeChant P, Boronda D, Cornel AJ (2004) Influence of temperature and concentration of Vectobac((R)) on control of the salt-marsh mosquito, Ochlerotatus squamiger, in Monterey County, California. J Am Mosq Control Assoc 20:165–170

    PubMed  Google Scholar 

  8. 8.

    Boisvert M, Boisvert J, Aubin A (2001) Factors affecting residual dosages of two formulations of Bacillus thuringiensis subsp israelensis tested in the same stream during a 3-year experiment. Biocontrol Sci Tech 11:727–744

    Article  Google Scholar 

  9. 9.

    Margalit J, Bobroglo H (1984) The effect of organic materials and solids in water on the persistence of Bacillus-thuringiensis var israelensis serotype-H-14. J Appl Entomol 97:516–520

    Google Scholar 

  10. 10.

    Tetreau G, Stalinski R, Kersusan D, Veyrenc S, David JP, Reynaud S, Despres L (2012) Decreased toxicity of Bacillus thuringiensis subsp. israelensis to mosquito larvae after contact with leaf litter. Appl Environ Microbiol 78:5189–5195

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  11. 11.

    Aly C, Mulla MS, Federici BA (1985) Sporulation and toxin production by Bacillus-thuringiensis var israelensis in cadavers of mosquito larvae (Diptera, Culicidae). J Invertebr Pathol 46:251–258

    CAS  Article  Google Scholar 

  12. 12.

    Khawaled K, Bendov E, Zaritsky A, Barak Z (1990) The fate of Bacillus-thuringiensis var israelensis in Bacillus-thuringiensis var israelensis-killed pupae of Aedes-aegypti. J Invertebr Pathol 56:312–316

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Boisvert M, Boisvert J (1999) Persistence of toxic activity and recycling of Bacillus thuringiensis var. israelensis in cold water: field experiments using diffusion chambers in a pond. Biocontrol Sci Tech 9:507–522

    Article  Google Scholar 

  14. 14.

    Zaritsky A, Khawaled K (1986) Toxicity in carcasses of Bacillus thuringiensis var. israelensis-killed Aedes aegypti larvae against scavenging larvae: implications to bioassay. J Am Mosq Control Assoc 2:555–559

    CAS  PubMed  Google Scholar 

  15. 15.

    Tilquin M, Paris M, Reynaud S, Despres L, Ravanel P, Geremia RA, Gury J (2008) Long lasting persistence of Bacillus thuringiensis subsp. israelensis (Bti) in mosquito natural habitats. PLoS ONE 3:e3432

    PubMed Central  Article  PubMed  Google Scholar 

  16. 16.

    de Melo-Santos MAV, de Araujo AP, Rios EMM, Regis L (2009) Long lasting persistence of Bacillus thuringiensis serovar. israelensis larvicidal activity in Aedes aegypti (Diptera: Culicidae) breeding places is associated to bacteria recycling. Biol Control 49:186–191

    Article  Google Scholar 

  17. 17.

    Tetreau G, Alessi M, Veyrenc S, Périgon S, David JP, Reynaud S, Després L (2012) Fate of Bacillus thuringiensis subsp. israelensis in the field: evidence for spore recycling and differential persistence of toxins in leaf litter. Appl Environ Microbiol 78:8362–8367

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  18. 18.

    David JP, Rey D, Cuany A, Bride JM, Meyran JC (2002) Larvicidal properties of decomposed leaf litter in the subalpine mosquito breeding sites. Environ Toxicol Chem 21:62–66

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Raymond B, Johnston PR, Nielsen-LeRoux C, Lereclus D, Crickmore N (2010) Bacillus thuringiensis: an impotent pathogen? Trends Microbiol 18:189–194

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Ministère Français de l'Agriculture et de l'Agroalimentaire (2012) e-phy: Le catalogue des produits phytopharmaceutiques et de leurs usages des matières fertilisantes et des supports de culture homologués en France. e-phy.agriculture.gouv.fr

  21. 21.

    Marigo G, Meyran JC, Tilquin M (2002) Matière active insecticide, procédé de préparation et utilisations. Patent #FR20020016544 20021223. Université de Grenoble, France

    Google Scholar 

  22. 22.

    Hajaij M, Carron A, Deleuze J, Gaven B, Setier-Rio ML, Vigo G, Thiery I, Nielsen-LeRoux C, Lagneau C (2005) Low persistence of Bacillus thuringiensis serovar israelensis spores in four mosquito biotopes of a salt marsh in southern France. Microb Ecol 50:475–487

    Article  PubMed  Google Scholar 

  23. 23.

    Jude PL, Tharmasegaram T, Sivasubramaniyam G, Senthilnanthanan M, Kannathasan S, Raveendran S, Ramasamy R, Surendran SN (2012) Salinity-tolerant larvae of mosquito vectors in the tropical coast of Jaffna, Sri Lanka and the effect of salinity on the toxicity of Bacillus thuringiensis to Aedes aegypti larvae. Parasites Vec 5:269

    Article  Google Scholar 

  24. 24.

    Osborn FR, Herrera MJ, Gomez CJ, Salazar A (2007) Comparison of two commercial formulations of Bacillus thuringiensis var. israelensis for the control of Anopheles aquasalis (Diptera : Culicidae) at three salt concentrations. Mem Inst Oswaldo Cruz 102:69–72

    Article  PubMed  Google Scholar 

  25. 25.

    Guidi V, Patocchi N, Luethy P, Tonolla M (2011) Distribution of Bacillus thuringiensis subsp israelensis in soil of a Swiss Wetland Reserve after 22 years of mosquito control. Appl Environ Microbiol 77:3663–3668

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  26. 26.

    Glare TR, O'Callaghan M (2000) Bacillus thuringiensis: biology, ecology and safety. John Wiley & Sons, Chichester

    Google Scholar 

  27. 27.

    Ibrahim MA, Griko N, Junker M, Bulla LA (2010) Bacillus thuringiensis: a genomics and proteomics perspective. Bioeng Bugs 1:31–50

    PubMed Central  Article  PubMed  Google Scholar 

  28. 28.

    Vettori C, Paffetti D, Saxena D, Stotzky G, Giannini R (2003) Persistence of toxins and cells of Bacillus thuringiensis subsp kurstaki introduced in sprays to Sardinia soils. Soil Biol Biochem 35:1635–1642

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was founded by the French National Research Agency (ANR, project ANR-08-CES-006-01 DIBBECO). We thank R. Foussadier, S. Reynaud, S. Veyrenc, A. Bonin, E. Coissac and C. Melodelima (members of the DIBBECO Consortium) for helpful discussions on the B. thuringiensis subsp. israelensis persistence part of the DIBBECO project, C. Nielsen-LeRoux for providing the rabbit antiserum specific for H14 serotype, S. Perigon and M. Fabris for technical help, and G. Moraru for correcting our English.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laurence Després.

Additional information

Claire Duchet and Guillaume Tetreau contributed equally to the work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duchet, C., Tetreau, G., Marie, A. et al. Persistence and Recycling of Bioinsecticidal Bacillus thuringiensis subsp. israelensis Spores in Contrasting Environments: Evidence from Field Monitoring and Laboratory Experiments. Microb Ecol 67, 576–586 (2014). https://doi.org/10.1007/s00248-013-0360-7

Download citation

Keywords

  • Leaf Litter
  • Water Level Fluctuation
  • Mosquito Larva
  • Mosquito Control
  • Temporary Pond