Skip to main content

Advertisement

Log in

Molecular Characterization of Skin Microbiota Between Cancer Cachexia Patients and Healthy Volunteers

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Systemic inflammation contributes to both the development of cancer and of cachexia. The microenvironment of bacterial habitats might be changed during the progression of cancer cachexia. The aim of this study was to quantitatively and qualitatively compare the composition of the skin microbiota between cancer cachexia patients and healthy volunteers. Cutaneous bacteria were swabbed at the axillary fossa of 70 cancer cachexia patients and 34 healthy individuals from China. Nested-PCR-denaturing gradient gel electrophoresis (PCR-DGGE) with primers specifically targeting V3 region and quantitative PCR (qPCR) for total bacteria, Corynebacterium spp., Staphylococcus spp., and Staphylococcus epidermidis were performed on all samples. Barcoded 454 pyrosequencing of the V3–V4 regions was performed on 30 randomly selected samples. By comparing diversity and richness indices, we found that the skin microbiome of cachectic cancer patients is less diverse than that of healthy participants, though these differences were not significant. The main microbes that reside on human skin were divided into four phyla: Firmicutes, Actinobacteria, Proteobacteria, and Bacteroidetes. Staphylococcus spp. and Corynebacterium spp. were the dominant bacteria at the genus level. Significantly fewer Corynebacterium spp. had been observed in cachexia patients compared to healthy subjects. These results suggest that the presence of cancer and cachexia alters human skin bacterial communities. Understanding the changes in microbiota during cancer cachexia may lead to new insights into the syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fearon K, Arends J, Baracos V (2013) Understanding the mechanisms and treatment options in cancer cachexia. Nat Rev Clin Oncol 10(2):90–99. doi:10.1038/nrclinonc.2012.209

    Article  CAS  PubMed  Google Scholar 

  2. Blum D, Omlin A, Fearon K, Baracos V, Radbruch L, Kaasa S, Strasser F (2010) Evolving classification systems for cancer cachexia: ready for clinical practice? Support Care Cancer 18(3):273–279. doi:10.1007/s00520-009-0800-6

    Article  PubMed  Google Scholar 

  3. Batista ML Jr, Olivan M, Alcantara PS, Sandoval R, Peres SB, Neves RX, Silverio R, Maximiano LF, Otoch JP, Seelaender M (2013) Adipose tissue-derived factors as potential biomarkers in cachectic cancer patients. Cytokine 61(2):532–539. doi:10.1016/j.cyto.2012.10.023

    Article  CAS  PubMed  Google Scholar 

  4. Argiles JM, Busquets S, Lopez-Soriano FJ (2011) Anti-inflammatory therapies in cancer cachexia. Eur J Pharmacol 668(Suppl 1):S81–S86. doi:10.1016/j.ejphar.2011.07.007

    Article  CAS  PubMed  Google Scholar 

  5. Dethlefsen L, McFall-Ngai M, Relman DA (2007) An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature 449(7164):811–818. doi:10.1038/nature06245

    Article  CAS  PubMed  Google Scholar 

  6. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118. doi:10.1016/j.cell.2005.05.007

    Article  CAS  PubMed  Google Scholar 

  7. Hamady M, Knight R (2009) Microbial community profiling for human microbiome projects: tools, techniques, and challenges. Genome Res 19(7):1141–1152. doi:10.1101/gr.085464.108

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, Spencer S, Hall JA, Dzutsev A, Kong H, Campbell DJ, Trinchieri G, Segre JA, Belkaid Y (2012) Compartmentalized control of skin immunity by resident commensals. Science 337(6098):1115–1119. doi:10.1126/science.1225152

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Verhulst NO, Qiu YT, Beijleveld H, Maliepaard C, Knights D, Schulz S, Berg-Lyons D, Lauber CL, Verduijn W, Haasnoot GW, Mumm R, Bouwmeester HJ, Claas FHJ, Dicke M, van Loon JJA, Takken W, Knight R, Smallegange RC (2011) Composition of human skin microbiota affects attractiveness to malaria mosquitoes. Plos One 6(12):e28991. doi:10.1371/journal.pone.0028991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hanski I, von Hertzen L, Fyhrquist N, Koskinen K, Torppa K, Laatikainen T, Karisola P, Auvinen P, Paulin L, Makela MJ, Vartiainen E, Kosunen TU, Alenius H, Haahtela T (2012) Environmental biodiversity, human microbiota, and allergy are interrelated. Proc Natl Acad Sci U S A 109(21):8334–8339. doi:10.1073/pnas.1205624109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Redel H, Gao Z, Li H, Alekseyenko AV, Zhou Y, Perez-Perez GI, Weinstock G, Sodergren E, Blaser MJ (2013) Quantitation and composition of cutaneous microbiota in diabetic and nondiabetic men. J Infect Dis 207(7):1105–1114. doi:10.1093/infdis/jit005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697. doi:10.1126/science.1177486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Grice EA, Kong HH, Renaud G, Young AC, Bouffard GG, Blakesley RW, Wolfsberg TG, Turner ML, Segre JA, Nisc Comparative S (2008) A diversity profile of the human skin microbiota. Genome Res 18(7):1043–1050. doi:10.1101/gr.075549.107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Grice EA (2009) Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Blaser MJ, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Estrada I, Gao Z, Clemente JC, Costello EK, Knight R (2013) Distinct cutaneous bacterial assemblages in a sampling of South American Amerindians and US residents. ISME J 7(1):85–95. doi:10.1038/ismej.2012.81

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Oates A, Bowling FL, Boulton AJ, McBain AJ (2012) Molecular and culture-based assessment of the microbial diversity of diabetic chronic foot wounds and contralateral skin sites. J Clin Microbiol 50(7):2263–2271. doi:10.1128/JCM.06599-11

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Gao Z, Perez-Perez GI, Chen Y, Blaser MJ (2010) Quantitation of major human cutaneous bacterial and fungal populations. J Clin Microbiol 48(10):3575–3581. doi:10.1128/JCM.00597-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Fainsinger RL, Jatoi A, Loprinzi C, MacDonald N, Mantovani G, Davis M, Muscaritoli M, Ottery F, Radbruch L, Ravasco P, Walsh D, Wilcock A, Kaasa S, Baracos VE (2011) Definition and classification of cancer cachexia: an international consensus. Lancet Oncol 12(5):489–495. doi:10.1016/S1470-2045(10)70218-7

    Article  PubMed  Google Scholar 

  19. Paulino LC, Tseng C-H, Strober BE, Blaser MJ (2006) Molecular analysis of fungal microbiota in samples from healthy human skin and psoriatic lesions. J Clin Microbiol 44(8):2933–2941. doi:10.1128/jcm.00785-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Muyzer G, de Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59(3):695–700

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Van der Gucht K, Sabbe K, De Meester L, Vloemans N, Zwart G, Gillis M, Vyverman W (2001) Contrasting bacterioplankton community composition and seasonal dynamics in two neighbouring hypertrophic freshwater lakes. Environ Microbiol 3(11):680–690. doi:10.1046/j.1462-2920.2001.00242.x

    Article  Google Scholar 

  22. Ling Z, Kong J, Liu F, Zhu H, Chen X, Wang Y, Li L, Nelson KE, Xia Y, Xiang C (2010) Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics 11:488. doi:10.1186/1471-2164-11-488

    Article  PubMed Central  PubMed  Google Scholar 

  23. McBain AJ, Bartolo RG, Catrenich CE, Charbonneau D, Ledder RG, Rickard AH, Symmons SA, Gilbert P (2003) Microbial characterization of biofilms in domestic drains and the establishment of stable biofilm microcosms. Appl Environ Microbiol 69(1):177–185. doi:10.1128/aem.69.1.177-185.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J 5(10):1571–1579. doi:10.1038/ismej.2011.41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sogin ML, Morrison HG, Huber JA, Mark Welch D, Huse SM, Neal PR, Arrieta JM, Herndl GJ (2006) Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103(32):12115–12120. doi:10.1073/pnas.0605127103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. doi:10.1128/AEM.01541-09

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. doi:10.1128/AEM.00062-07

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Sekiguchi H, Tomioka N, Nakahara T, Uchiyama H (2001) A single band does not always represent single bacterial strains in denaturing gradient gel electrophoresis analysis. Biotechnol Lett 23(15):1205–1208. doi:10.1023/a:1010517117046

    Article  CAS  Google Scholar 

  29. Hummelen R, Fernandes AD, Macklaim JM, Dickson RJ, Changalucha J, Gloor GB, Reid G (2010) Deep sequencing of the vaginal microbiota of women with HIV. PLoS One 5(8):e12078. doi:10.1371/journal.pone.0012078

    Article  PubMed Central  PubMed  Google Scholar 

  30. Qin J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ling Z, Kong J, Jia P, Wei C, Wang Y, Pan Z, Huang W, Li L, Chen H, Xiang C (2010) Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microb Ecol 60(3):677–690. doi:10.1007/s00248-010-9712-8

    Article  CAS  PubMed  Google Scholar 

  32. Wu X, Ma C, Han L, Nawaz M, Gao F, Zhang X, Yu P, Zhao CA, Li L, Zhou A, Wang J, Moore JE, Millar BC, Xu J (2010) Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 61(1):69–78. doi:10.1007/s00284-010-9582-9

    Article  CAS  PubMed  Google Scholar 

  33. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13(4):260–270. doi:10.1038/nrg3182

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357(9255):539–545. doi:10.1016/S0140-6736(00)04046-0

    Article  CAS  PubMed  Google Scholar 

  35. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899. doi:10.1016/j.cell.2010.01.025

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Argiles JM, Moore-Carrasco R, Fuster G, Busquets S, Lopez-Soriano FJ (2003) Cancer cachexia: the molecular mechanisms. Int J Biochem Cell Biol 35(4):405–409. doi:10.1016/S1357-2725(02)00251-0

    Article  CAS  PubMed  Google Scholar 

  37. Jones AP, Webb LM, Anderson AO, Leonard EJ, Rot A (1995) Normal human sweat contains interleukin-8. J Leukoc Biol 57(3):434–437

    CAS  PubMed  Google Scholar 

  38. Didierjean L, Gruaz D, Frobert Y, Grassi J, Dayer JM, Saurat JH (1990) Biologically active interleukin 1 in human eccrine sweat: site-dependent variations in alpha/beta ratios and stress-induced increased excretion. Cytokine 2(6):438–446

    Article  CAS  PubMed  Google Scholar 

  39. Ahmed AA, Nordlind K, Schultzberg M, Liden S (1994) Interleukin-1 alpha- and beta-, interleukin-6- and tumour necrosis factor-alpha-like immunoreactivities in chronic granulomatous skin conditions. Acta Derm Venereol 74(6):435–440

    CAS  PubMed  Google Scholar 

  40. Schittek B, Hipfel R, Sauer B, Bauer J, Kalbacher H, Stevanovic S, Schirle M, Schroeder K, Blin N, Meier F, Rassner G, Garbe C (2001) Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nat Immunol 2(12):1133–1137. doi:10.1038/ni732

    Article  CAS  PubMed  Google Scholar 

  41. Kolls JK, McCray PB Jr, Chan YR (2008) Cytokine-mediated regulation of antimicrobial proteins. Nat Rev Immunol 8(11):829–835. doi:10.1038/nri2433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Gutowska-Owsiak D, Ogg GS (2013) Cytokine regulation of the epidermal barrier. Clin Exp Allergy 43(6):586–598. doi:10.1111/cea.12023

    CAS  PubMed  Google Scholar 

  43. Friedrich CL, Moyles D, Beveridge TJ, Hancock RE (2000) Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob Agents Chemother 44(8):2086–2092

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Stark M, Liu LP, Deber CM (2002) Cationic hydrophobic peptides with antimicrobial activity. Antimicrob Agents Chemother 46(11):3585–3590

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Otto M (2010) Staphylococcus colonization of the skin and antimicrobial peptides. Expert Rev Dermatol 5(2):183–195. doi:10.1586/edm.10.6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Yao Y, Vuong C, Kocianova S, Villaruz AE, Lai Y, Sturdevant DE, Otto M (2006) Characterization of the Staphylococcus epidermidis accessory-gene regulator response: quorum-sensing regulation of resistance to human innate host defense. J Infect Dis 193(6):841–848. doi:10.1086/500246

    Article  PubMed  Google Scholar 

  47. Bindels LB, Beck R, Schakman O, Martin JC, De Backer F, Sohet FM, Dewulf EM, Pachikian BD, Neyrinck AM, Thissen JP, Verrax J, Calderon PB, Pot B, Grangette C, Cani PD, Scott KP, Delzenne NM (2012) Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model. PLoS One 7(6):e37971. doi:10.1371/journal.pone.0037971

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Bindels LB, Delzenne NM (2013) Muscle wasting: the gut microbiota as a new therapeutic target? Int J Biochem Cell Biol 45(10):2186–2190. doi:10.1016/j.biocel.2013.06.021

    Article  CAS  PubMed  Google Scholar 

  49. Yu Z, Morrison M (2004) Comparisons of different hypervariable regions of rrs genes for use in fingerprinting of microbial communities by PCR-denaturing gradient gel electrophoresis. Appl Environ Microbiol 70(8):4800–4806. doi:10.1128/AEM.70.8.4800-4806.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Ledder RG, Gilbert P, Huws SA, Aarons L, Ashley MP, Hull PS, McBain AJ (2007) Molecular analysis of the subgingival microbiota in health and disease. Appl Environ Microbiol 73(2):516–523. doi:10.1128/AEM.01419-06

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Hooper LV, Gordon JI (2001) Commensal host-bacterial relationships in the gut. Science 292(5519):1115–1118

    Article  CAS  PubMed  Google Scholar 

  52. Antonio MA, Hawes SE, Hillier SL (1999) The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J Infect Dis 180(6):1950–1956. doi:10.1086/315109

    Article  CAS  PubMed  Google Scholar 

  53. Temmerman R, Masco L, Vanhoutte T, Huys G, Swings J (2003) Development and validation of a nested-PCR-denaturing gradient gel electrophoresis method for taxonomic characterization of bifidobacterial communities. Appl Environ Microbiol 69(11):6380–6385. doi:10.1128/aem.69.11.6380-6385.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Shimano S, Sambe M, Kasahara Y (2012) Application of nested PCR-DGGE (denaturing gradient gel electrophoresis) for the analysis of ciliate communities in soils. Microbes Environ 27(2):136–141. doi:10.1264/jsme2.ME11287

    Article  PubMed Central  PubMed  Google Scholar 

  55. van den Bogert B, de Vos WM, Zoetendal EG, Kleerebezem M (2011) Microarray analysis and barcoded pyrosequencing provide consistent microbial profiles depending on the source of human intestinal samples. Appl Environ Microbiol 77(6):2071–2080. doi:10.1128/AEM.02477-10

    Article  PubMed Central  PubMed  Google Scholar 

  56. Greenblum S, Turnbaugh PJ, Borenstein E (2012) Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 109(2):594–599. doi:10.1073/pnas.1116053109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Cabrera-Rubio R, Garcia-Nunez M, Seto L, Anto JM, Moya A, Monso E, Mira A (2012) Microbiome diversity in the bronchial tracts of patients with chronic obstructive pulmonary disease. J Clin Microbiol 50(11):3562–3568. doi:10.1128/JCM.00767-12

    Article  PubMed Central  PubMed  Google Scholar 

  58. Tuttle MS, Mostow E, Mukherjee P, Hu FZ, Melton-Kreft R, Ehrlich GD, Dowd SE, Ghannoum MA (2011) Characterization of bacterial communities in venous insufficiency wounds by use of conventional culture and molecular diagnostic methods. J Clin Microbiol 49(11):3812–3819. doi:10.1128/JCM.00847-11

    Article  PubMed Central  PubMed  Google Scholar 

  59. Kaakoush NO, Day AS, Huinao KD, Leach ST, Lemberg DA, Dowd SE, Mitchell HM (2012) Microbial dysbiosis in pediatric patients with Crohn's disease. J Clin Microbiol 50(10):3258–3266. doi:10.1128/JCM.01396-12

    Article  PubMed Central  PubMed  Google Scholar 

  60. Sontakke S, Cadenas MB, Maggi RG, Diniz PP, Breitschwerdt EB (2009) Use of broad range16S rDNA PCR in clinical microbiology. J Microbiol Methods 76(3):217–225. doi:10.1016/j.mimet.2008.11.002

    Article  CAS  PubMed  Google Scholar 

  61. Nadkarni MA, Martin FE, Jacques NA, Hunter N (2002) Determination of bacterial load by real-time PCR using a broad-range (universal) probe and primers set. Microbiology 148(Pt 1):257–266

    Article  CAS  PubMed  Google Scholar 

  62. Chakravorty S, Helb D, Burday M, Connell N, Alland D (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69(2):330–339. doi:10.1016/j.mimet.2007.02.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Byrne FJ, Waters SM, Waters PS, Curtin W, Kerin M (2007) Development of a molecular methodology to quantify Staphylococcus epidermidis in surgical washout samples from prosthetic joint replacement surgery. Eur J Orthop Surg Traumatol 17(5):449–456. doi:10.1007/s00590-007-0206-4

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Prof. Xinhan Zhao and Zhigang Liu for the sample collection. We would also like to thank the Center for Disease Control and Prevention of Xi'an and the Center for Disease Control and Prevention of Shaanxi province for the equipment and technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiru Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Han, L., Yu, P. et al. Molecular Characterization of Skin Microbiota Between Cancer Cachexia Patients and Healthy Volunteers. Microb Ecol 67, 679–689 (2014). https://doi.org/10.1007/s00248-013-0345-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0345-6

Keywords

Navigation