Spatial Variation in the Bacterial and Denitrifying Bacterial Community in a Biofilter Treating Subsurface Agricultural Drainage

Abstract

Denitrifying biofilters can remove agricultural nitrates from subsurface drainage, reducing nitrate pollution that contributes to coastal hypoxic zones. The performance and reliability of natural and engineered systems dependent upon microbially mediated processes, such as the denitrifying biofilters, can be affected by the spatial structure of their microbial communities. Furthermore, our understanding of the relationship between microbial community composition and function is influenced by the spatial distribution of samples. In this study we characterized the spatial structure of bacterial communities in a denitrifying biofilter in central Illinois. Bacterial communities were assessed using automated ribosomal intergenic spacer analysis for bacteria and terminal restriction fragment length polymorphism of nosZ for denitrifying bacteria. Non-metric multidimensional scaling and analysis of similarity (ANOSIM) analyses indicated that bacteria showed statistically significant spatial structure by depth and transect, while denitrifying bacteria did not exhibit significant spatial structure. For determination of spatial patterns, we developed a package of automated functions for the R statistical environment that allows directional analysis of microbial community composition data using either ANOSIM or Mantel statistics. Applying this package to the biofilter data, the flow path correlation range for the bacterial community was 6.4 m at the shallower, periodically inundated depth and 10.7 m at the deeper, continually submerged depth. These spatial structures suggest a strong influence of hydrology on the microbial community composition in these denitrifying biofilters. Understanding such spatial structure can also guide optimal sample collection strategies for microbial community analyses.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Rabalais NN, Diaz RJ, Levin LA, Turner RE, Gilbert D, Zhang J (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosci 7(2):585–619

    CAS  Article  Google Scholar 

  2. 2.

    Rabalais NN, Turner RE, Wiseman WJ (2002) Gulf of mexico hypoxia, a.k.a. "The dead zone". Ann Rev Ecol Syst 33(1):235–263

    Article  Google Scholar 

  3. 3.

    Blann KL, Anderson JL, Sands GR, Vondracek B (2009) Effects of agricultural drainage on aquatic ecosystems: a review. Crit Rev Env Sci Tec 39(11):909–1001

    CAS  Article  Google Scholar 

  4. 4.

    Dinnes DL, Karlen DL, Jaynes DB, Kaspar TC, Hatfield JL, Colvin TS, Cambardella CA (2002) Nitrogen management strategies to reduce nitrate leaching in tile-drained Midwestern soils. Agron J 94(1):153–171

    Article  Google Scholar 

  5. 5.

    Woli KP, David MB, Cooke RA, McIsaac GF, Mitchell CA (2010) Nitrogen balance in and export from agricultural fields associated with controlled drainage systems and denitrifying bioreactors. Ecol Eng 36(11):1558–1566

    Article  Google Scholar 

  6. 6.

    Cooke RA, Doheny AM, Hirschi MC (2001) Bio-reactors for edge-of-field treatment of tile outflow. Paper presented at the 2001 ASAE Annual conference, ASAE paper #012018

  7. 7.

    Jaynes DB, Kaspar TC, Moorman TB, Parkin TB (2008) In situ bioreactors and deep drain-pipe installation to reduce nitrate losses in artificially drained fields. J Environ Qual 37(2):429–436

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Schipper LA, Robertson WD, Gold AJ, Jaynes DB, Cameron SC (2010) Denitrifying bioreactors—an approach for reducing nitrate loads to receiving waters. Ecol Eng 36(11):1532–1543

    Article  Google Scholar 

  9. 9.

    Martiny JBH, Bohannan BJM, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, other authors, (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa–area relationship for bacteria. Nat Geosci 432:750–753

    CAS  Google Scholar 

  11. 11.

    Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M, Gillings M, Beattie AJ (2004) Spatial scaling of microbial eukaryote diversity. Nat Geosci 432:747–750

    CAS  Google Scholar 

  12. 12.

    McGrady-Steed J, Harris PM, Morin PJ (1997) Biodiversity regulates ecosystem predictability. Nat Geosci 390:162–165

    CAS  Google Scholar 

  13. 13.

    Bell T, Newman JA, Silverman BW, Turner SL, Lilley AK (2005) The contribution of species richness and composition to bacterial services. Nat Geosci 436:1157–1160

    CAS  Google Scholar 

  14. 14.

    Naeem S, Li SB (1997) Biodiversity enhances ecosystem reliability. Nat Geosci 390:507–509

    CAS  Google Scholar 

  15. 15.

    Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nat Geosci 396:69–72

    Google Scholar 

  16. 16.

    Legendre P, Legendre L (1998) Numerical ecology, vol 2. Elsevier, Amsterdam

    Google Scholar 

  17. 17.

    Prosser JI (2010) Replicate or lie. Environ Microbiol 12(6):1806–1810

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Lennon JT (2011) Replication, lies and lesser-known truths regarding experimental design in environmental microbiology. Environ Microbiol 13(6):1383–1386

    Article  PubMed  Google Scholar 

  19. 19.

    Franklin RB, Mills AL (2003) Multi-scale variation in spatial heterogeneity for microbial community structure in an eastern Virginia agricultural field. FEMS Microbiol Ecol 44:335–346

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Mantel N (1967) Detection of disease clustering and a generalized regression approach. Cancer Res 27(2P1):209–220

    CAS  PubMed  Google Scholar 

  21. 21.

    Cho JC, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 66(12):5448–5456

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  22. 22.

    Lilleskov EA, Bruns TD, Horton TR, Taylor DL, Grogan P (2004) Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiol Ecol 49:319–332

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ramette A, Tiedje JM (2007) Multiscale responses of microbial life to spatial distance and environmental heterogeneity in a patchy ecosystem. Proc Natl Acad Sci U S A 104(8):2761–2766

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  24. 24.

    Bent SJ, Gucker CL, Oda Y, Forney LJ (2003) Spatial distribution of Rhodopseudomonas palustris ecotypes on a local scale. Appl Environ Microbiol 69(9):5192–5197

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  25. 25.

    Oda Y, Star B, Huisman LA, Gottschal JC, Forney LJ (2003) Biogeography of the purple nonsulfur bacterium Rhodopseudomonas palustris. Appl Environ Microbiol 69(9):5186–5191

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  26. 26.

    Fulthorpe RR, Rhodes AN, Tiedje JM (1998) High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria. Appl Environ Microbiol 64(5):1620–1627

    PubMed Central  CAS  PubMed  Google Scholar 

  27. 27.

    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) Vegan: community ecology package. R package version 2

  28. 28.

    Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Article  Google Scholar 

  29. 29.

    Core Team R (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  30. 30.

    Kjellin J, Hallin S, Worman A (2007) Spatial variations in denitrification activity in wetland sediments explained by hydrology and denitrifying community structure. Water Res 41(20):4710–4720

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Enwall K, Throback IN, Stenberg M, Soderstrom M, Hallin S (2010) Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management. Appl Environ Microbiol 76(7):2243–2250

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  32. 32.

    Philippot L, Cuhel J, Saby NPA, Cheneby D, Chronakova A, Bru D, Arrouays D, Martin-Laurent F, Simek M (2009) Mapping field-scale spatial patterns of size and activity of the denitrifier community. Environ Microbiol 11(6):1518–1526

    Article  PubMed  Google Scholar 

  33. 33.

    Friedrich U, Van Langenhove H, Altendorf K, Lipski A (2003) Microbial community and physicochemical analysis of an industrial waste gas biofilter and design of 16s rRNA-targeting oligonucleotide probes. Environ Microbiol 5(3):183–201

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Tiedje JM, Simkins S, Groffman PM (1989) Perspectives on measurement of denitrification in the field including recommended protocols for acetylene based methods. Plant Soil 115:261–284

    Article  Google Scholar 

  35. 35.

    Appleford JM, Rodriguez LF, Cooke RAC, Zhang Y, Kent AD, Zilles J (2008) Characterization of microorganisms contributing to denitrification in tile drain biofilters in illinois. Paper presented at the 2008 ASABE Annual Meeting, ASABE paper number 084583, St. Joseph, MI

  36. 36.

    Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  37. 37.

    Fisher MM, Triplett EW (1999) Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl Environ Microbiol 65(10):4630–4636

    PubMed Central  CAS  PubMed  Google Scholar 

  38. 38.

    Kent AD, Yannarell AC, Rusak JA, Triplett EW, McMahon KD (2007) Synchrony in aquatic microbial community dynamics. ISME J 1(1):38–47

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16s rRNA. Appl Environ Microbiol 63(11):4516–4522

    PubMed Central  CAS  PubMed  Google Scholar 

  40. 40.

    Rich JJ, Heichen RS, Bottomley PJ, Cromack K, Myrold DD (2003) Community composition and functioning of denitrifying bacteria from adjacent meadow and forest soils. Appl Environ Microbiol 69(10):5974–5982

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  41. 41.

    Bray JR, Curtis JT (1957) An ordination of the upland forest communities of Southern Wisconsin. Ecol Monogr 27:326–349

    Google Scholar 

  42. 42.

    Clarke KR, Green RH (1988) Statistical design and analysis for a biological effects study. Mar Ecol-Prog Ser 46(1–3):213–226

    Article  Google Scholar 

  43. 43.

    Clarke KR (1993) Nonparametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  44. 44.

    Oden NL, Sokal RR (1986) Directional autocorrelation — an extension of spatial correlograms to 2 dimensions. Syst Zool 35:608–617

    Article  Google Scholar 

  45. 45.

    Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74(6):1659–1673

    Article  Google Scholar 

  46. 46.

    Deutsch C, Journel A (1992) GSLIB: geostatistical software library and user's guide. Oxford University Press, Oxford

    Google Scholar 

  47. 47.

    Legendre P, Fortin MJ (1989) Spatial pattern and ecological analysis. Vegetatio 80:107–138

    Article  Google Scholar 

  48. 48.

    Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  49. 49.

    Noll M, Matthies D, Frenzel P, Derakshani M, Liesack W (2005) Succession of bacterial community structure and diversity in a paddy soil oxygen gradient. Environ Microbiol 7(3):382–395

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Brune A, Frenzel P, Cypionka H (2000) Life at the oxic–anoxic interface: microbial activities and adaptations. FEMS Microbiol Rev 24(5):691–710

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Ludemann H, Arth I, Liesack W (2000) Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl Environ Microbiol 66(2):754–762

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  52. 52.

    Birch HF (1958) The effect of soil drying on humus decomposition and nitrogen availability. Plant Soil 10(1):9–31

    CAS  Article  Google Scholar 

  53. 53.

    Bloem J, Deruiter PC, Koopman GJ, Lebbink G, Brussaard L (1992) Microbial numbers and activity in dried and rewetted arable soil under integrated and conventional management. Soil Biol Biochem 24(7):655–665

    Article  Google Scholar 

  54. 54.

    Goberna M, Insam H, Klammer S, Pascual JA, Sánchez J (2005) Microbial community structure at different depths in disturbed and undisturbed semiarid Mediterranean forest soils. Microb Ecol 50(3):315–326

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Parkin TB (1987) Soil microsites as a source of denitrification variability. Soil Sci Soc Amer J 51(5):1194–1199

    CAS  Article  Google Scholar 

  56. 56.

    Jones CM, Thies JE (2007) Soil microbial community analysis using two-dimensional polyacrylamide gel electrophoresis of the bacterial ribosomal internal transcribed spacer regions. J Microbiol Meth 69(2):256–267

    CAS  Article  Google Scholar 

  57. 57.

    Okubo A, Sugiyama S (2009) Comparison of molecular fingerprinting methods for analysis of soil microbial community structure. Ecol Res 24(6):1399–1405

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Timothy Ellsworth and Dr. Douglas Walker for helpful discussions, Glen Menezes, Paul Davidson, and Ryan Goss for assistance with the sampling, Ariane Peralta and Sara Paver for technical assistance, and Dora Cohen for testing the code and documentation. Funding was provided by a United States Department of Agriculture National Needs Fellowship to JMA and by United States National Science Foundation project CBET-0853820.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julie L. Zilles.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1757 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Andrus, J.M., Porter, M.D., Rodríguez, L.F. et al. Spatial Variation in the Bacterial and Denitrifying Bacterial Community in a Biofilter Treating Subsurface Agricultural Drainage. Microb Ecol 67, 265–272 (2014). https://doi.org/10.1007/s00248-013-0286-0

Download citation

Keywords

  • Microbial Community
  • Bacterial Community
  • Flow Path
  • Terminal Restriction Fragment Length Polymorphism
  • Cetyl Trimethyl Ammonium Bromide