Skip to main content

Advertisement

Log in

Environmental Controls on the Activity of Aquifer Microbial Communities in the 300 Area of the Hanford Site

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Aquifer microbes in the 300 Area of the Hanford Site in southeastern Washington State, USA, are located in an oligotrophic environment and are periodically exposed to U(VI) concentrations that can range up to 10 μM in small sediment fractures. Assays of 3H-leucine incorporation indicated that both sediment-associated and planktonic microbes were metabolically active, and that organic C was growth-limiting in the sediments. Although bacteria suspended in native groundwater retained high activity when exposed to 100 μM U(VI), they were inhibited by U(VI) <1 μM in synthetic groundwater that lacked added bicarbonate. Chemical speciation modeling suggested that positively charged species and particularly (UO2)3(OH)5 + rose in concentration as more U(VI) was added to synthetic groundwater, but that carbonate complexes dominated U(VI) speciation in natural groundwater. U toxicity was relieved when increasing amounts of bicarbonate were added to synthetic groundwater containing 4.5 μM U(VI). Pertechnetate, an oxyanion that is another contaminant of concern at the Hanford Site, was not toxic to groundwater microbes at concentrations up to 125 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Deutsch C, Weber T (2012) Nutrient ratios as a tracer and driver of ocean biogeochemistry. Annual Rev Marine Sci 4:113–141

    Article  Google Scholar 

  2. Chappell PD, Moffett JW, Hynes AM, Webb EA (2012) Molecular evidence of iron limitation and availability in the global diazotroph Trichodesmium. ISME J 6:1728–1739. doi:10.1038/ismej.2012.13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kourtev PS, Nakatsu CH, Konopka A (2006) Responses of the anaerobic bacterial community to addition of organic C in chromium(VI)- and iron(III)-amended microcosms. Appl Environ Microbiol 72:628–637. doi:10.1128/aem.72.1.628-637.2006

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Nakatsu CH, Carmosini N, Baldwin B, Beasley F, Kourtev P, Konopka A (2005) Soil microbial community responses to additions of organic carbon substrates and heavy metals (Pb and Cr). Appl Environ Microbiol 71:7679–7689. doi:10.1128/aem.71.12.7679-7689.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Lin XJ, McKinley J, Resch CT, Kaluzny R, Lauber CL, Fredrickson J, Knight R, Konopka A (2012) Spatial and temporal dynamics of the microbial community in the Hanford unconfined aquifer. ISME J 6:1665–1676. doi:10.1038/ismej.2012.26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Stegen JC, Lin XJ, Konopka AE, Fredrickson JK (2012) Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J 6:1653–1664. doi:10.1038/ismej.2012.22

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Lovley DR, Ueki T, Zhang T, Malvankar NS, Shrestha PM, Flanagan KA, Aklujkar M, Butler JE, Giloteaux L, Rotaru AE, Holmes DE, Franks AE, Orellana R, Risso C, Nevin KP (2011) Geobacter: the microbe electric's physiology, ecology, and practical applications. Adv Microb Physiol 59:1–100

    Article  CAS  PubMed  Google Scholar 

  8. Wall JD, Krumholz LR (2006) Uranium reduction. Ann Rev Microbiol 60:149–166

    Article  CAS  Google Scholar 

  9. Wilkins MJ, Livens FR, Vaughan DJ, Lloyd JR (2006) The impact of Fe(III)-reducing bacteria on uranium mobility. Biogeochemistry 78:125–150

    Article  CAS  Google Scholar 

  10. Ruggiero CE, Boukhalfa H, Forsythe JH, Lack JG, Hersman LE, Neu MP (2005) Actinide and metal toxicity to prospective bioremediation bacteria. Environ Microbiol 7:88–97. doi:10.1111/j.1462-2920.2004.00666.x

    Article  CAS  PubMed  Google Scholar 

  11. VanEngelen MR, Field EK, Gerlach R, Lee BD, Apel WA, Peyton BM (2010) UO22+ speciation determines uranium toxicity and bioaccumulation in an environmental Pseudomonas sp. isolate. Environ Toxicol Chem 29:763–769. doi:10.1002/etc.126

    Article  CAS  PubMed  Google Scholar 

  12. Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. Wiley-Interscience, New York, pp 405–414

    Google Scholar 

  13. Hughes MN, Poole RK (1991) Metal speciation and microbial growth—the hard (and soft) facts. J Gen Microbiol 137:725–734

    Article  CAS  Google Scholar 

  14. Ramamoorthy S, Kushner DJ (1975) Binding of mercuric and other heavy metal ions by microbial growth media. Microb Ecol 2:162–176. doi:10.1007/bf02010436

    Article  CAS  PubMed  Google Scholar 

  15. Brooks SC, Fredrickson JK, Carroll SL, Kennedy DW, Zachara JM, Plymale AE, Kelly SD, Kemner KM, Fendorf S (2003) Inhihition of bacterial U(VI) reduction by calcium. Environ Sci Technol 37:1850–1858. doi:10.1021/es0210042

    Article  CAS  PubMed  Google Scholar 

  16. Ganesh R, Robinson KG, Reed GD, Sayler GS (1997) Reduction of hexavalent uranium from organic complexes by sulfate- and iron-reducing bacteria. Appl Environ Microbiol 63:4385–4391

    PubMed Central  CAS  PubMed  Google Scholar 

  17. Lin XJ, Kennedy D, Fredrickson J, Bjornstad B, Konopka A (2012) Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site. Environ Microbiol 14:414–425. doi:10.1111/j.1462-2920.2011.02659.x

    Article  CAS  PubMed  Google Scholar 

  18. Bjornstad BN, Horner JA, Vermeul VR, Lanigan DC, Thorne PD (2009) Borehole completion and conceptual hydrogeologic model for the IFRC Well Field, 300 Area, Hanford Site. http://ifchanford.pnl.gov/pdfs/18340.pdf , PNNL-18340, Pacific Northwest National Laboratory, Richland.

  19. Baath E, Pettersson M, Soderberg KH (2001) Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacteria. Soil Biol Biochem 33:1571–1574. doi:10.1016/s0038-0717(01)00073-6

    Article  CAS  Google Scholar 

  20. Demoling F, Figueroa D, Baath E (2007) Comparison of factors limiting bacterial growth in different soils. Soil Biol Biochem 39:2485–2495. doi:10.1016/j.soilbio.2007.05.002

    Article  CAS  Google Scholar 

  21. Alden L, Demoling F, Baath E (2001) Rapid method of determining factors limiting bacterial growth in soil. Appl Environ Microbiol 67:1830–1838. doi:10.1128/aem.67.4.1830-1838.2001

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Plymale AE, Fredrickson JK, Zachara JM, Dohnalkova AC, Heald SM, Moore DA, Kennedy DW, Marshall MJ, Wang CM, Resch CT, Nachimuthu P (2011) Competitive reduction of pertechnetate ((TcO4-)-Tc-99) by dissimilatory metal reducing bacteria and biogenic Fe(II). Environ Sci Technol 45:951–957. doi:10.1021/es1027647

    Article  CAS  PubMed  Google Scholar 

  23. Lovell CR, Konopka A (1985) Seasonal bacterial production in a dimictic lake as measured by increases in cell numbers and thymidine incorporation. Appl Environ Microbiol 49:492–500

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Kirchman D (2001) Measuring bacterial biomass production and growth rates from leucine incorporation in natural aquatic environments. Methods Microbiol 30:227–237

    Article  CAS  Google Scholar 

  25. Katsenovich YP, Carvajal DA, Wellman DM, Lagos LE (2012) Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate. Chem Geol 308(Äì309):1–9. doi:10.1016/j.chemgeo.2012.03.010

    Article  Google Scholar 

  26. Um W, Zachara JM, Liu CX, Moore DA, Rod KA (2010) Resupply mechanism to a contaminated aquifer: a laboratory study of U(VI) desorption from capillary fringe sediments. Geochimica Et Cosmochimica Acta 74:5155–5170. doi:10.1016/j.gca.2010.02.001

    Article  CAS  Google Scholar 

  27. Stumm W, Morgan JJ (1995) Chemical equilibria and rates in natural waters. Wiley, New York

    Google Scholar 

  28. Ayuso SV, Lopez-Archilla AI, Montes C, Guerrero MD (2010) Microbial activities in a coastal, sandy aquifer system (Doñana Natural Protected Area, SW Spain). Geomicrobiol J 27:409–423. doi:10.1080/01490450903480277

    Article  CAS  Google Scholar 

  29. Wilhartitz IC, Kirschner AKT, Stadler H, Herndl GJ, Dietzel M, Latal C, Mach RL, Farnleitner AH (2009) Heterotrophic prokaryotic production in ultraoligotrophic alpine karst aquifers and ecological implications. Fems Microbiol Ecol 68:287–299. doi:10.1111/j.1574-6941.2009.00679.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Ann Rev Microbiol 39:321–346

    Article  CAS  Google Scholar 

  31. Carlson CA, Giovannoni SJ, Hansell DA, Goldberg SJ, Parsons R, Otero MP, Vergin K, Wheeler BR (2002) Effect of nutrient amendments on bacterioplankton production, community structure, and DOC utilization in the northwestern Sargasso Sea. Aquat Microbial Ecol 30:19–36. doi:10.3354/ame030019

    Article  Google Scholar 

  32. Carlsson P, Caron DA (2001) Seasonal variation of phosphorus limitation of bacterial growth in a small lake. Limnol Oceanog 46:108–120

    Article  CAS  Google Scholar 

  33. Vadstein O (2011) Large variation in growth-limiting factors for marine heterotrophic bacteria in the Arctic waters of Spitsbergen (78 degrees N). Aquat Microbial Ecol 63:289–297. doi:10.3354/ame01503

    Article  Google Scholar 

  34. Vrede K (2005) Nutrient and temperature limitation of bacterioplankton growth in temperate lakes. Microbial Ecol 49:245–256. doi:10.1007/s0248-004-0259-4

    Article  CAS  Google Scholar 

  35. Allgeier JE, Rosemond AD, Layman CA (2011) The frequency and magnitude of non-additive responses to multiple nutrient enrichment. J Appl Ecol 48:96–101. doi:10.1111/j.1365-2664.2010.01894.x

    Article  Google Scholar 

  36. Liu CX, Jeon BH, Zachara JM, Wang ZM, Dohnalkova A, Fredrickson JK (2006) Kinetics of microbial reduction of solid phase U(VI). Environ Sci Technol 40:6290–6296

    Article  CAS  PubMed  Google Scholar 

  37. Zachara JM, Brown C, Christensen JN, Davis JA, Dresel PE, Liu C, Kelly S, McKinley JP, Serne J, Um W (2007) A site-wide perspective on uranium geochemistry at the Hanford Site. Pacific Northwest National Laboratory.

  38. Levenspiel O (1980) The Monod equation—a revisit and a generalization to product inhibition situations. Biotechnol Bioeng 22:1671–1687. doi:10.1002/bit.260220810

    Article  CAS  Google Scholar 

  39. Amonette JE, Russell CK, Carosino KA, Robinson NL, Ho JT (2003) Toxicity of Al to Desulfovibrio desulfuricans. Appl Environ Microbiol 69:4057–4066. doi:10.1128/aem.69.7.4057-4066.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Sani RK, Peyton BM, Dohnalkova A (2006) Toxic effects of uranium on Desulfovibrio desulfuricans G20. Environ Toxicol Chem 25:1231–1238

    Article  CAS  PubMed  Google Scholar 

  41. Charles AL, Markich SJ, Stauber JL, De Filippis LF (2002) The effect of water hardness on the toxicity of uranium to a tropical freshwater alga (Chlorella sp.). Aquat Toxicol 60:61–73

    Article  CAS  PubMed  Google Scholar 

  42. Fortin C, Dutel L, Garnier-Laplace J (2004) Uranium complexation and uptake by a green alga in relation to chemical speciation: the importance of the free uranyl ion. Environ Toxicol Chem 23:974–981

    Article  CAS  PubMed  Google Scholar 

  43. Hogan AC, van Dam RA, Markich SJ, Camilleri C (2005) Chronic toxicity of uranium to a tropical green alga (Chlorella sp.) in natural waters and the influence of dissolved organic carbon. Aquat Toxicol 75:343–353. doi:10.1016/j.aquatox.2005.07.012

    Article  CAS  PubMed  Google Scholar 

  44. Diaz-Ravina M, Baath E (2001) Response of soil bacterial communities pre-exposed to different metals and reinoculated in an unpolluted soil. Soil Biol Biochem 33:241–248. doi:10.1016/s0038-0717(00)00136-x

    Article  CAS  Google Scholar 

  45. Shi W, Bischoff M, Turco R, Konopka A (2002) Long-term effects of chromium and lead upon the activity of soil microbial communities. Appl Soil Ecol 21:169–177

    Article  Google Scholar 

  46. Gephart RE (2010) A short history of waste management at the Hanford Site. Phys Chem Earth 35:298–306. doi:10.1016/j.pce.2010.03.032

    Article  Google Scholar 

  47. Zachara JM, Heald SM, Jeon B-H, Kukkadapu RK, Liu C, McKinley JP, Dohnalkova AC, Moore DA (2007) Reduction of pertechnetate Tc(VII) by aqueous Fe(II) and the nature of solid phase redox products. Geochimica Et Cosmochimica Acta 71:2137–2157. doi:10.1016/j.gca.2006.10.025

    Article  CAS  Google Scholar 

  48. Fredrickson JK, Zachara JM, Balkwill DL, Kennedy D, Li SMW, Kostandarithes HM, Daly MJ, Romine MF, Brockman FJ (2004) Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford Site, Washington State. Appl Environ Microbiol 70:4230–4241. doi:10.1128/aem.70.7.4230-4241.2004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Lynch JM (1988) The terrestrial environment. In: Lynch JM, Hobbie JE (eds) Microorganisms in action: concepts and applications in microbial ecology. Blackwell Science, Oxford, pp 103–131

    Google Scholar 

  50. Carvajal DA, Katsenovich YP, Lagos LE (2012) The effects of aqueous bicarbonate and calcium ions on uranium biosorption by Arthrobacter G975 strain. Chem Geol 330:51–59. doi:10.1016/j.chemgeo.2012.08.018

    Article  Google Scholar 

  51. Bencheikh-Latmani R, Leckie JO (2003) Association of uranyl with the cell wall of Pseudomonas fluorescens inhibits metabolism. Geochimica Et Cosmochimica Acta 67:4057–4066. doi:10.1016/s0016-7037(03)00214-x

    Article  CAS  Google Scholar 

  52. Konopka A, Zakharova T (1999) Quantification of bacterial lead resistance via activity assays. J Microbiol Methods 37:17–22

    Article  CAS  PubMed  Google Scholar 

  53. Joner EJ, Munier-Lamy C, Gouget B (2007) Bioavailability and microbial adaptation to elevated levels of uranium in an acid, organic topsoil forming on an old mine spoil. Environ Toxicol Chem 26:1644–1648. doi:10.1897/06-551r.1

    Article  CAS  PubMed  Google Scholar 

  54. VanEngelen MR, Szilagyi RK, Gerlach R, Lee BD, Apel WA, Peyton BM (2011) Uranium exerts acute toxicity by binding to pyrroloquinoline quinone cofactor. Environ Sci Technol 45:937–942. doi:10.1021/es101754x

    Article  CAS  PubMed  Google Scholar 

  55. Vanhoudt N, Vandenhove H, Horemans N, Remans T, Opdenakker K, Smeets K, Bello DM, Wannijn J, Van Hees M, Vangronsveld J, Cuypers A (2011) Unraveling uranium induced oxidative stress related responses in Arabidopsis thaliana seedlings. Part I: responses in the roots. J Environ Radioactivity 102:630–637. doi:10.1016/j.jenvrad.2011.03.015

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tom Resch and Dean Moore for their assistance with chemical analyses and groundwater sampling. This research was supported by the US Department of Energy (DOE), Office of Biological and Environmental Research, as part of Subsurface Biogeochemistry Research Program's Scientific Focus Area and Integrated Field-Scale Research Challenge at the Pacific Northwest National Laboratory (PNNL). PNNL is operated for DOE by Battelle under contract DE-AC06-76RLO 1830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Konopka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 155 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konopka, A., Plymale, A.E., Carvajal, D.A. et al. Environmental Controls on the Activity of Aquifer Microbial Communities in the 300 Area of the Hanford Site. Microb Ecol 66, 889–896 (2013). https://doi.org/10.1007/s00248-013-0283-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0283-3

Keywords

Navigation