Skip to main content
Log in

Effects of Nano Zero-Valent Iron on Klebsiella oxytoca and Stress Response

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Nano zero-valent iron (NZVI) is a new option for contaminated soil and groundwater treatment, despite little is known on their impact on environmental microorganisms. Klebsiella oxytoca K5 strain, isolated from the NZVI-treated soil, was used to investigate the bacterial, phenotypical and molecular response to commercial NZVI exposure. Cytotoxicity assays at three NZVI concentrations (1, 5 and 10 mg mL−1) suggested a negligible bacteriostatic effect and the lack of bactericidal effect. Structural changes were analysed by electronic microscopy. Scanning electron microscopy revealed the presence of NZVI around some bacterial cells, but no apparent morphological changes were seen. NZVI attachment to the cell surface was confirmed by transmission electron microscopy, although most of them were not affected. A proteomic approach (two-dimensional electrophoresis, matrix-assisted laser desorption ionization time-of-flight mass spectrometry) was used to investigate NZVI impact. For the first time to our knowledge, results revealed that exposure of a soil bacterium to NZVI resulted in the overproduction of tryptophanase, associated with oxidative stress response. K5 may set up an adaptative stress response involving indole as a signal molecule to inform the bacterial population about environmental changes. These findings would improve knowledge on the molecular mechanisms underlying bacterial response to NZVI exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117:1823–1831

    Article  Google Scholar 

  2. Mueller N, Braun J, Bruns J, Černík M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19:550–558

    Article  CAS  Google Scholar 

  3. Cundy A, Hopkinson L, Whitby R (2008) Use of iron-based technologies in contaminated land and groundwater remediation: a review. Sci Total Environ 400:42–51

    Article  CAS  PubMed  Google Scholar 

  4. Fajardo C, Ortíz LT, Rodríguez-Membibre ML, Nande M, Lobo MC, Martin M (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86:802–808

    Article  CAS  PubMed  Google Scholar 

  5. Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DY, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735

    Article  CAS  PubMed  Google Scholar 

  6. Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):4927–4933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Diao M, Yao M (2009) Use of zero-valent iron nanoparticles in inactivating microbes. Water Res 43:5243–5251

    Article  CAS  PubMed  Google Scholar 

  8. Chen J, Xiu Z, Lowry GV, Alvarez PJ (2011) Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res 45:1995–2001

    Article  CAS  PubMed  Google Scholar 

  9. Wilmes P, Bond PL (2006) Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol 14(2):92–97

    Article  CAS  PubMed  Google Scholar 

  10. Nie L, Wu G, Zhang W (2006) Correlation between mRNA and protein abundance in Desulfovibrio vulgaris: a multiple regression to identify sources of variations. Biochem Biophys Res Commun 339:603–610

    Article  CAS  PubMed  Google Scholar 

  11. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interf Sci 275:177–182

    Article  CAS  Google Scholar 

  12. Martinez-Gomariz M, Hernaez ML, Gutierrez D, Ximenez-Embun P, Prestamo G (2009) Proteomic analysis by two-dimensional differential gel electrophoresis (2D DIGE) of a high-pressure effect in Bacillus cereus. J Agric Food Chem 57:3543–3549

    Article  CAS  PubMed  Google Scholar 

  13. Sechi S, Chait B (1998) Modification of cysteine residues by alkylation. A tool in peptide mapping and protein identification. Anal Chem 70(24):5150–5158

    Article  CAS  PubMed  Google Scholar 

  14. Kim SW, Baek YW, An YJ (2011) Assay-dependent effect of silver nanoparticles to Escherichia coli and Bacillus subtilis. Appl Microbiol Biotechnol 92:1045–1052

    Article  CAS  PubMed  Google Scholar 

  15. Barnes RJ, Van der Gast CJ, Riba O, Lehtivirta LE, Prosser JI, Dobson PJ, Thompson IP (2010) The impact of zero-valent iron nanoparticles on a river water bacterial community. J Hazard Mater 184:73–80

    Article  CAS  PubMed  Google Scholar 

  16. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156

    Article  CAS  PubMed  Google Scholar 

  17. Jambor JL, Dutrizac JE (1998) Occurrence and constitution of natural and synthetic ferrihydrite, a widespread iron oxyhydroxide. Chem Rev 98:2549–2585

    Article  CAS  PubMed  Google Scholar 

  18. Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran S, Klaessig F, Castranova V, Thompson M (2009) Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater 8:543–557

    Article  CAS  PubMed  Google Scholar 

  19. Diaz-Visurraga J, Garcia A, Cardenas G (2010) Morphological changes induced in bacteria as evaluated by electron microscopy. In: Méndez-Vilas A, Díaz J (eds) Microscopy: science, technology, applications and education. Formatex, Badajoz, pp 307–315

    Google Scholar 

  20. Diaz-Visurraga J, Garcia A, Cardenas G (2010) Lethal effect of chitosan-Ag (I) films on Staphylococcus aureus as evaluated by electron microscopy. J Appl Microbiol 108:633–646

    Article  CAS  PubMed  Google Scholar 

  21. Amro NA, Kotra LP, Wadu-Mesthrige K, Bulychev A, Mobashery S, Liu G (2000) High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16:2789–2796

    Article  CAS  Google Scholar 

  22. Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924

    Article  CAS  PubMed  Google Scholar 

  23. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    Article  CAS  PubMed  Google Scholar 

  24. Fajardo C, Saccà ML, Martinez-Gomariz M, Costa G, Nande M, Martin M (2013) Transcriptional and proteomic stress responses of a soil bacterium Bacillus cereus to nano sized zero-valent iron (nZVI) particles. Chemosphere. doi:10.1016/j.chemosphere.2013.05.082

    Google Scholar 

  25. Domka J, Lee J, Bansal T, Wood T (2007) Temporal gene-expression in Escherichia coli K-12 biofilms. Environ Microbiol 9:332–346

    Article  CAS  PubMed  Google Scholar 

  26. Pomposiello P, Bennik M, Demple B (2001) Genome-wide transcriptional profiling of the Escherichia coli responses to superoxide stress and sodium salicylate. J Bacteriol 183(13):3890–3902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zheng M, Wang X, Templeton L, Smulsky D, LaRossa R, Storz G (2001) DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J Bacteriol 183(15):4562–4570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Kuczynska-Wisnik D, Matuszewska E, Laskowska E (2010) Escherichia coli heat-shock proteins IbpA and IbpB affect biofilm by influencing the level of extracellular indole. Microbiology 156:148–157

    Article  CAS  PubMed  Google Scholar 

  29. Kuczynska-Wisnik D, Matuszewska E, Furmanek-Blaszk B, Leszczynska D, Grudowska A, Szczepaniak P, Laskowska E (2010) Antibiotics promoting oxidative stress inhibit formation of Escherichia coli biofilm via indole signalling. Res Microbiol 161:847–853

    Article  CAS  PubMed  Google Scholar 

  30. Winzer K, Hardie K, Williams P (2002) Bacterial cell-to-cell communication: sorry, can't talk now—gone to lunch! Curr Opin Microbiol 5:216–222

    Article  CAS  PubMed  Google Scholar 

  31. Gerth K, Metzger R, Reichenbach H (1993) Induction of myxospores in Stigmatella aurantiaca (myxobacteria): inducers and inhibitors of myxospore formation and mutants with a changed sporulation behavior. J Gen Microbiol 139:865–871

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the Ministerio de Ciencia e Innovación (CTM2010-20617-C02-01) and Comunidad de Madrid (EIADES project, S2009/AMB-1478). Research by M.L. Saccà was supported by the PICATA postdoctoral fellowship of the Moncloa Campus of International Excellence (UCM-UPM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ludovica Saccà.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saccà, M.L., Fajardo, C., Nande, M. et al. Effects of Nano Zero-Valent Iron on Klebsiella oxytoca and Stress Response. Microb Ecol 66, 806–812 (2013). https://doi.org/10.1007/s00248-013-0269-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0269-1

Keywords

Navigation