Microbial Ecology

, Volume 66, Issue 3, pp 489–499 | Cite as

Culturing Bias in Marine Heterotrophic Flagellates Analyzed Through Seawater Enrichment Incubations

  • Javier del Campo
  • Vanessa Balagué
  • Irene Forn
  • Itziar Lekunberri
  • Ramon Massana
Microbiology of Aquatic Systems


The diversity of heterotrophic flagellates is generally based on cultivated strains, on which ultrastructural, physiological, and molecular studies have been performed. However, the relevance of these cultured strains as models of the dominant heterotrophic flagellates in the marine planktonic environment is unclear. In fact, molecular surveys typically recover novel eukaryotic lineages that have refused cultivation so far. This study was designed to directly address the culturing bias in planktonic marine heterotrophic flagellates. Several microcosms were established adding increasing amounts and sources of organic matter to a confined natural microbial community pre-filtered by 3 μm. Growth dynamics were followed by epifluorescence microscopy and showed the expected higher yield of bacteria and heterotrophic flagellates at increased organic matter additions. Moreover, protist diversity analyzed by molecular tools showed a clear substitution in the community, which differed more and more from the initial sample as the organic matter increased. Within this gradient, there was also an increase of sequences related to cultured organisms as well as a decrease in diversity. Culturing bias is partly explained by the use of organic matter in the isolation process, which drives a shift in the community to conditions closer to laboratory cultures. An intensive culturing effort using alternative isolation methods is necessary to allow the access to the missing heterotrophic flagellates that constitute the abundant and active taxa in marine systems.


Organic Matter Clone Library Organic Matter Source Heterotrophic Flagellate Organic Matter Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by projects MICROVIS (CTM2007-62140/MAR, MEC), FLAME (CGL2010-16304, MICINN) and the European Funding Agencies from the ERA-net program BiodivERsA under the BioMarKs project. Javier del Campo was funded by I3P program (I3PPRE-06-00676, CSIC).

Supplementary material

248_2013_251_MOESM1_ESM.pdf (251 kb)
Supplementary Fig. 1 UniFrac Cluster Sample analysis. The scale bar shows the distance between clusters in UniFrac units: a distance of 0 means that two samples are identical, and a distance of 0.5 means that two samples contain mutually exclusive lineages. (PDF 250 kb)


  1. 1.
    Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs. Anton Leeuw 81:293–308CrossRefGoogle Scholar
  2. 2.
    Jürgens K, Massana R (2008) Protistan grazing on marine bacterioplankton. In: Kirchman DL (ed) Microbial ecology of the oceans, 2nd edn. Wiley, New York, pp 383–441CrossRefGoogle Scholar
  3. 3.
    Pernthaler J (2005) Predation on prokaryotes in the water column and its ecological implications. Nat Rev Microbiol 3:537–546CrossRefPubMedGoogle Scholar
  4. 4.
    Guillou L, Viprey M, Chambouvet A, Welsh RM, Kirkham AR, Massana R, Scanlan DJ, Worden AZ (2008) Widespread occurrence and genetic diversity of marine parasitoids belonging to Syndiniales (Alveolata). Environ Microbiol 10:397–408CrossRefGoogle Scholar
  5. 5.
    Fenchel T (1982) Ecology of heterotrophic microflagellates: I. Some important forms and their functional morphology. Mar Ecol Prog Ser 8:211–223CrossRefGoogle Scholar
  6. 6.
    Boenigk J, Pfandl K, Stadler P, Chatzinotas A (2005) High diversity of the “Spumella-like” flagellates: an investigation based on the SSU rRNA gene sequences of isolates from habitats located in six different geographic regions. Environ Microbiol 7:685–697CrossRefPubMedGoogle Scholar
  7. 7.
    Cowling AJ (1991) Free-living heterotrophic flagellates: methods of isolation and maintenance, including sources of strains in culture. In: Patterson DJ, Larsen J (eds) The biology of free-living heterotrophic flagellates. Oxford University Press, Oxford, pp 477–492Google Scholar
  8. 8.
    Wang J, Levin P (2009) Metabolism, cell growth and the bacterial cell cycle. Nat Rev Microbiol 7:822–827PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Fenchel T (1982) Ecology of heterotrophic microflagellates: IV. Quantitative occurrence and importance as bacterial consumers. Mar Ecol Prog Ser 9:35–42CrossRefGoogle Scholar
  10. 10.
    Lim EL, Dennet MR, Caron DA (1999) The ecology of Paraphysomonas imperforata based on studies employing oligonucleotide probe identification in coastal water samples and enrichment cultures. Limnol Oceanogr 44:37–51CrossRefGoogle Scholar
  11. 11.
    Arndt H, Dietrich D, Auer B, Cleven EJ, Gräfenhan T, Weitere M, Mylnikov AP (2000) Functional diversity of heterotrophic flagellates in aquatic ecosystems. In: Leadbeater BSC, Green JC (eds) The flagellates: unity, diversity and evolution. Taylor & Francis Press, London, pp 240–268Google Scholar
  12. 12.
    Scheckenbach F, Wylezich C, Weitere M, Hausmann K, Arndt H (2005) Molecular identity of strains of heterotrophic flagellates isolated from surface waters and deep-sea sediments of the South Atlantic based on SSU rDNA. Aquat Microb Ecol 38:239–247CrossRefGoogle Scholar
  13. 13.
    Massana R, del Campo J, Dinter C, Sommaruga R (2007) Crash of a population of the marine heterotrophic flagellate Cafeteria roenbergensis by viral infection. Environ Microbiol 9:2660–2669CrossRefPubMedGoogle Scholar
  14. 14.
    del Campo J, Massana R (2011) Emerging diversity within chrysophytes, choanoflagellates and bicosoecids based on molecular surveys. Protist 162:435–448CrossRefPubMedGoogle Scholar
  15. 15.
    Massana R, Balagué V, Guillou L, Pedrós-Alió C (2004) Picoeukaryotic diversity in an oligotrophic coastal site studied by molecular and culturing approaches. FEMS Microbiol Ecol 50:231–243CrossRefPubMedGoogle Scholar
  16. 16.
    Massana R, Guillou L, Terrado R, Forn I, Pedrós-Alió C (2006) Growth of uncultured heterotrophic flagellates in unamended seawater incubations. Aquat Microb Ecol 45:171–180CrossRefGoogle Scholar
  17. 17.
    Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–685PubMedCentralCrossRefPubMedGoogle Scholar
  18. 18.
    Snyder JC, Spuhler J, Wiedenheft B, Roberto FF, Douglas T, Young MJ (2004) Effects of culturing on the population structure of a hyperthermophilic virus. Microb Ecol 48:561–566CrossRefPubMedGoogle Scholar
  19. 19.
    Countway PD, Gast RJ, Savai P, Caron DA (2005) Protistan diversity estimates based on 18S rDNA from seawater incubations in the Western North Atlantic. J Eukaryot Microbiol 52:95–106CrossRefPubMedGoogle Scholar
  20. 20.
    Massana R, Gasol JM, Bjørnsen PK, Blackburn N, Hagström A, Hietanen S, Hygu BH, Kuparinen J, Pedrós-Alió C (1997) Measurement of bacterial size via image analysis of epifluorescence preparations: description of an inexpensive system and solutions to some of the most common problems. Sci Mar 61:397–407Google Scholar
  21. 21.
    Díez B, Pedrós-Alió C, Massana R (2001) Study of genetic diversity of eukaryotic picoplankton in different oceanic regions by small-subunit rRNA gene cloning and sequencing. Appl Environ Microbiol 67:2932–2941PubMedCentralCrossRefPubMedGoogle Scholar
  22. 22.
    Muyzer G, Brinkhoff T, Nübel U, Santegoeds C, Schäfer H, Wawer C (1997) Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In: Akkermans ADL, van Elsas JD, de Bruijn FJ (eds) Molecular microbial ecology manual, vol. 3.4.4. Kluwer, Dordrecht, pp 1–27Google Scholar
  23. 23.
    Díez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951PubMedCentralCrossRefPubMedGoogle Scholar
  24. 24.
    Elwood HJ, Olsen GJ, Sogin ML (1985) The small subunit ribosomal RNA gene sequences from the hypotrichous ciliates Ogwicha nova and Stylonychia pustulata. J Mol Biol Evol 2:399–410Google Scholar
  25. 25.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Guillou L, Bachar D, Audic S, Bass D, Berney C, Bittner L, Boutte C, Burgaud G, de Vargas C, Decelle J, del Campo J, Dolan JR, Dunthorn M, Edvardsen B, Holzmann M, Kooistra WHCF, Lara E, Le Bescot N, Logares R, Mahe F, Massana R, Montresor M, Morard R, Not F, Pawlowski J, Probert I, Sauvadet AL, Siano R, Stoeck T, Vaulot D, Zimmermann P, Christen R (2013) The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote small sub-unit rRNA sequences with curated taxonomy. Nucleic Acids Res 41:597–604CrossRefGoogle Scholar
  27. 27.
    Katoh K, Misawa K, Kuma L, Miyata Y (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066PubMedCentralCrossRefPubMedGoogle Scholar
  28. 28.
    Galtier N, Gouy M, Gautier C (1996) SeaView and Phylo_Win, two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548PubMedGoogle Scholar
  29. 29.
    Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552CrossRefPubMedGoogle Scholar
  30. 30.
    Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690CrossRefPubMedGoogle Scholar
  31. 31.
    Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinfoma 17:754–755CrossRefGoogle Scholar
  32. 32.
    Hamady M, Lozupone C, Knight R (2010) Fast UniFrac: facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data. ISME J 4:17–27PubMedCentralCrossRefPubMedGoogle Scholar
  33. 33.
    Massana R, Castresana J, Balagué V, Guillou L, Romari K, Groisillier A, Valentin K, Pedrós-Alió C (2004) Phylogenetic and ecological analysis of novel marine stramenopiles. Appl Environ Microbiol 70:3528–3534PubMedCentralCrossRefPubMedGoogle Scholar
  34. 34.
    Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–656CrossRefGoogle Scholar
  35. 35.
    Eilers H, Pernthaler J, Amann R (2000) Succession of pelagic marine bacteria during enrichment: a close look on cultivation-induced shifts. Appl Environ Microbiol 66:4634–4640PubMedCentralCrossRefPubMedGoogle Scholar
  36. 36.
    Rappé MS, Connon SA, Vergin KL, Giovannoni SJ (2002) Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633CrossRefPubMedGoogle Scholar
  37. 37.
    Pedrós-Alió C (2006) Marine microbial diversity: can it be determined? Trends Microbiol 14:257–263CrossRefPubMedGoogle Scholar
  38. 38.
    Allers E, Gómez-Consarnau L, Pinhassi J, Gasol JM, Simek K, Pernthaler J (2007) Response of Alteromonadaceae and Rhodobacteriaceae to glucose and phosphorus manipulation in marine mesocosms. Environ Microbiol 9:2417–2429CrossRefPubMedGoogle Scholar
  39. 39.
    Jürgens K, Güde H (1994) The potential importance of grazing-resistant bacteria in planktonic systems. Mar Ecol Prog Ser 112:169–188CrossRefGoogle Scholar
  40. 40.
    Davis PG, Sieburth JM (1984) Estuarine and oceanic microflagellate predation of actively growing bacteria: estimation by frequency of dividing-divided bacteria. Mar Ecol Prog Ser 19:237–246CrossRefGoogle Scholar
  41. 41.
    Hahn MW, Moore ERB, Höfle MG (2000) Role of microcolony formation in the protistan grazing defense of the aquatic bacterium Pseudomonas sp. MWH1. Microb Ecol 39:175–185PubMedGoogle Scholar
  42. 42.
    Simek K, Pernthaler J, Weinbauer MG, Hornak K, Dolan JR, Nedoma J, Masin M, Amann R (2001) Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir. Appl Environ Microbiol 67:2723–2733PubMedCentralCrossRefPubMedGoogle Scholar
  43. 43.
    Weber F, del Campo J, Wylezich C, Massana R, Jürgens K (2012) Unveiling trophic functions of uncultured protist taxa by incubation experiments in the brackish Baltic Sea. PLoS One 7:e41970PubMedCentralCrossRefPubMedGoogle Scholar
  44. 44.
    Fenchel T (1982) Ecology of heterotrophic microflagellates: II. Bioenergetics and growth. Mar Ecol Prog Ser 8:225–231CrossRefGoogle Scholar
  45. 45.
    Caron DA, Goldman JC, Andersen OK, Dennett MR (1985) Nutrient cycling in a microflagellate food chain: II. Population dynamics and carbon cycling. Mar Ecol Prog Ser 24:243–254CrossRefGoogle Scholar
  46. 46.
    Eccleston-Parry JD, Leadbeater BSC (1994) A comparison of the growth kinetics of six marine heterotrophic nanoflagellates fed with one bacterial species. Mar Ecol Prog Ser 105:167–177CrossRefGoogle Scholar
  47. 47.
    López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D (2001) Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607CrossRefPubMedGoogle Scholar
  48. 48.
    Moon-van der Staay SY, de Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610CrossRefPubMedGoogle Scholar
  49. 49.
    Patterson DJ, Nygaard K, Steinberg G, Turley CM (1993) Heterotrophic flagellates and other protists associated with oceanic detritus throughout the water column in the mid North Atlantic. J Mar Biol Assoc UK 73:67–95CrossRefGoogle Scholar
  50. 50.
    Vørs N, Buck K, Chavez F, Eikrem W, Hansen L, Ostergaard J, Thomsen H (1995) Nanoplankton of the equatorial Pacific with emphasis on the heterotrophic protists. Deep Sea Res II 42:585–595CrossRefGoogle Scholar
  51. 51.
    Tong SM (1997) Heterotrophic flagellates from the water column in Shark Bay, Western Australia. Mar Biol 128:517–536CrossRefGoogle Scholar
  52. 52.
    Tong SM, Vørs N, Patterson DJ (1997) Heterotrophic flagellates, centrohelid heliozoa and filose amoebae from marine and freshwater sites in the Antarctic. Polar Biol 18:91–106CrossRefGoogle Scholar
  53. 53.
    Tikhonenkov DV, Mazei YA (2006) Distribution of heterotrophic flagellates at the littoral of estuary of Chernaya River (Kandalaksha Bay, White Sea). Russ J Mar Biol 32:276–283CrossRefGoogle Scholar
  54. 54.
    Tikhonenkov DV, Mazei YA, Mylnikov AP (2006) Species diversity of heterotrophic flagellates in White Sea littoral sites. Eur J Protistol 42:191–200CrossRefPubMedGoogle Scholar
  55. 55.
    del Campo J, Not F, Forn I, Sieracki ME, Massana R (2013) Taming the smallest predators of the oceans. ISME J 7:351–358PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Javier del Campo
    • 1
    • 3
  • Vanessa Balagué
    • 1
  • Irene Forn
    • 1
  • Itziar Lekunberri
    • 1
    • 2
  • Ramon Massana
    • 1
  1. 1.Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSICBarcelonaSpain
  2. 2.Department of Marine Biology, Faculty Center of EcologyUniversity of ViennaViennaAustria
  3. 3.Institut de Biologia Evolutiva, CSIC-UPFBarcelonaSpain

Personalised recommendations