Microbial Ecology

, Volume 66, Issue 2, pp 462–470 | Cite as

Dysbiosis Signature of Fecal Microbiota in Colorectal Cancer Patients

  • Na Wu
  • Xi Yang
  • Ruifen Zhang
  • Jun Li
  • Xue Xiao
  • Yongfei Hu
  • Yanfei Chen
  • Fengling Yang
  • Na Lu
  • Zhiyun Wang
  • Chunguang Luan
  • Yulan Liu
  • Baohong Wang
  • Charlie Xiang
  • Yuezhu Wang
  • Fangqing Zhao
  • George F. Gao
  • Shengyue Wang
  • Lanjuan Li
  • Haizeng Zhang
  • Baoli Zhu
Host Microbe Interactions

Abstract

The human gut microbiota is a complex system that is essential to the health of the host. Increasing evidence suggests that the gut microbiota may play an important role in the pathogenesis of colorectal cancer (CRC). In this study, we used pyrosequencing of the 16S rRNA gene V3 region to characterize the fecal microbiota of 19 patients with CRC and 20 healthy control subjects. The results revealed striking differences in fecal microbial population patterns between these two groups. Partial least-squares discriminant analysis showed that 17 phylotypes closely related to Bacteroides were enriched in the gut microbiota of CRC patients, whereas nine operational taxonomic units, represented by the butyrate-producing genera Faecalibacterium and Roseburia, were significantly less abundant. A positive correlation was observed between the abundance of Bacteroides species and CRC disease status (R = 0.462, P = 0.046 < 0.5). In addition, 16 genera were significantly more abundant in CRC samples than in controls, including potentially pathogenic Fusobacterium and Campylobacter species at genus level. The dysbiosis of fecal microbiota, characterized by the enrichment of potential pathogens and the decrease in butyrate-producing members, may therefore represent a specific microbial signature of CRC. A greater understanding of the dynamics of the fecal microbiota may assist in the development of novel fecal microbiome-related diagnostic tools for CRC.

Supplementary material

248_2013_245_MOESM1_ESM.pdf (159 kb)
ESM 1(PDF 159 kb)

References

  1. 1.
    Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837–848. doi:10.1016/j.cell.2006.02.017 PubMedCrossRefGoogle Scholar
  2. 2.
    Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133. doi:10.1146/annurev.mi.31.100177.000543 PubMedCrossRefGoogle Scholar
  3. 3.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S (2012) Host–gut microbiota metabolic interactions. Science 336(6086):1262–1267. doi:10.1126/science.1223813 PubMedCrossRefGoogle Scholar
  4. 4.
    Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336(6086):1268–1273. doi:10.1126/science.1223490 PubMedCrossRefGoogle Scholar
  5. 5.
    Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490(7418):55–60. doi:10.1038/nature11450 PubMedCrossRefGoogle Scholar
  6. 6.
    Scanlan PD, Shanahan F, Clune Y, Collins JK, O'Sullivan GC, O’Riordan M, Holmes E, Wang Y, Marchesi JR (2008) Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 10(3):789–798. doi:10.1111/j.1462-2920.2007.01503.x PubMedCrossRefGoogle Scholar
  7. 7.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444(7122):1027–1031. doi:10.1038/nature05414 PubMedCrossRefGoogle Scholar
  8. 8.
    De Cruz P, Prideaux L, Wagner J, Ng SC, McSweeney C, Kirkwood C, Morrison M, Kamm MA (2011) Characterization of the gastrointestinal microbiota in health and inflammatory bowel disease. Inflamm Bowel Dis. doi:10.1002/ibd.21751 Google Scholar
  9. 9.
    Tenesa A, Dunlop MG (2009) New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet 10(6):353–358. doi:10.1038/nrg2574 PubMedCrossRefGoogle Scholar
  10. 10.
    Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Tran Van Nhieu J, Furet JP (2011) Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 6(1):e16393. doi:10.1371/journal.pone.0016393 PubMedCrossRefGoogle Scholar
  11. 11.
    Moore WE, Moore LH (1995) Intestinal floras of populations that have a high risk of colon cancer. Appl Environ Microbiol 61(9):3202–3207PubMedGoogle Scholar
  12. 12.
    Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RA, Holt RA (2011) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22(2):299–306. doi:10.1101/gr.126516.111 PubMedCrossRefGoogle Scholar
  13. 13.
    Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, Baselga J, Liu C, Shivdasani RA, Ogino S, Birren BW, Huttenhower C, Garrett WS, Meyerson M (2011) Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res 22(2):292–298. doi:10.1101/gr.126573.111 PubMedCrossRefGoogle Scholar
  14. 14.
    Petrosino JF, Highlander S, Luna RA, Gibbs RA, Versalovic J (2009) Metagenomic pyrosequencing and microbial identification. Clin Chem 55(5):856–866. doi:10.1373/clinchem.2008.107565 PubMedCrossRefGoogle Scholar
  15. 15.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. doi:10.1128/AEM.00062-07 PubMedCrossRefGoogle Scholar
  16. 16.
    Claesson MJ, O’Sullivan O, Wang Q, Nikkila J, Marchesi JR, Smidt H, de Vos WM, Ross RP, O’Toole PW (2009) Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4(8):e6669. doi:10.1371/journal.pone.0006669 PubMedCrossRefGoogle Scholar
  17. 17.
    Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5(2):169–172. doi:10.1038/ismej.2010.133 PubMedCrossRefGoogle Scholar
  18. 18.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541. doi:10.1128/AEM.01541-09 PubMedCrossRefGoogle Scholar
  19. 19.
    Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, Ugarte E, Munoz-Tamayo R, Paslier DL, Nalin R, Dore J, Leclerc M (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11(10):2574–2584. doi:10.1111/j.1462-2920.2009.01982.x PubMedCrossRefGoogle Scholar
  20. 20.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072. doi:10.1128/AEM.03006-05 PubMedCrossRefGoogle Scholar
  21. 21.
    Boutaga K, van Winkelhoff AJ, Vandenbroucke-Grauls CM, Savelkoul PH (2005) Periodontal pathogens: a quantitative comparison of anaerobic culture and real-time PCR. FEMS Immunol Med Microbiol 45(2):191–199. doi:10.1016/j.femsim.2005.03.011 PubMedCrossRefGoogle Scholar
  22. 22.
    Kumar PS, Brooker MR, Dowd SE, Camerlengo T (2011) Target region selection is a critical determinant of community fingerprints generated by 16S pyrosequencing. PLoS One 6(6):e20956. doi:10.1371/journal.pone.0020956 PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y, Parameswaran P, Crowell MD, Wing R, Rittmann BE, Krajmalnik-Brown R (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106(7):2365–2370. doi:10.1073/pnas.0812600106 PubMedCrossRefGoogle Scholar
  24. 24.
    Huse SM, Dethlefsen L, Huber JA, Mark Welch D, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet 4(11):e1000255. doi:10.1371/journal.pgen.1000255 PubMedCrossRefGoogle Scholar
  25. 25.
    Dethlefsen L, Huse S, Sogin ML, Relman DA (2008) The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6(11):e280. doi:10.1371/journal.pbio.0060280 PubMedCrossRefGoogle Scholar
  26. 26.
    Toprak NU, Yagci A, Gulluoglu BM, Akin ML, Demirkalem P, Celenk T, Soyletir G (2006) A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin Microbiol Infect 12(8):782–786. doi:10.1111/j.1469-0691.2006.01494.x PubMedGoogle Scholar
  27. 27.
    Kim JM, Oh YK, Kim YJ, Oh HB, Cho YJ (2001) Polarized secretion of CXC chemokines by human intestinal epithelial cells in response to Bacteroides fragilis enterotoxin: NF-kappa B plays a major role in the regulation of IL-8 expression. Clin Exp Immunol 123(3):421–427. doi:10.1046/j.1365-2249.2001.01462.x PubMedCrossRefGoogle Scholar
  28. 28.
    Sanfilippo L, Li CK, Seth R, Balwin TJ, Menozzi MG, Mahida YR (2000) Bacteroides fragilis enterotoxin induces the expression of IL-8 and transforming growth factor-beta (TGF-beta) by human colonic epithelial cells. Clin Exp Immunol 119(3):456–463. doi:10.1046/j.1365-2249.2000.01155.x PubMedCrossRefGoogle Scholar
  29. 29.
    Wu S, Morin PJ, Maouyo D, Sears CL (2003) Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology 124(2):392–400. doi:10.1053/gast.2003.50047 PubMedCrossRefGoogle Scholar
  30. 30.
    Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, Huso DL, Brancati FL, Wick E, McAllister F, Housseau F, Pardoll DM, Sears CL (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15(9):1016–1022. doi:10.1038/nm.2015 PubMedCrossRefGoogle Scholar
  31. 31.
    Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB, Finlay BB, Littman DR (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4(4):337–349. doi:10.1016/j.chom.2008.09.009 PubMedCrossRefGoogle Scholar
  32. 32.
    Le Gouvello S, Bastuji-Garin S, Aloulou N, Mansour H, Chaumette MT, Berrehar F, Seikour A, Charachon A, Karoui M, Leroy K, Farcet JP, Sobhani I (2008) High prevalence of Foxp3 and IL17 in MMR-proficient colorectal carcinomas. Gut 57(6):772–779. doi:10.1136/gut.2007.123794 PubMedCrossRefGoogle Scholar
  33. 33.
    Allen-Vercoe E, Strauss J, Chadee K (2011) Fusobacterium nucleatum: an emerging gut pathogen? Gut Microbes 2(5):294–298. doi:10.1128/IAI.05118-11 PubMedCrossRefGoogle Scholar
  34. 34.
    Mondot S, Kang S, Furet JP, Aguirre de Carcer D, McSweeney C, Morrison M, Marteau P, Dore J, Leclerc M (2011) Highlighting new phylogenetic specificities of Crohn’s disease microbiota. Inflamm Bowel Dis 17(1):185–192. doi:10.1002/ibd.21436 PubMedCrossRefGoogle Scholar
  35. 35.
    Balamurugan R, Rajendiran E, George S, Samuel GV, Ramakrishna BS (2008) Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 23(8 Pt 1):1298–1303. doi:10.1111/j.1440-1746.2008.05490.x PubMedCrossRefGoogle Scholar
  36. 36.
    Wang T, Cai G, Qiu Y, Fei N, Zhang M, Pang X, Jia W, Cai S, Zhao L (2011) Structural segregation of gut microbiota between colorectal cancer patients and healthy volunteers. ISME J. doi:10.1038/ismej.2011.109 Google Scholar
  37. 37.
    Peppoloni S, Posteraro B, Colombari B, Manca L, Hartke A, Giard JC, Sanguinetti M, Fadda G, Blasi E (2011) Role of the (Mn) superoxide dismutase of Enterococcus faecalis in the in vitro interaction with microglia. Microbiology 157(Pt 6):1816–1822. doi:10.1099/mic.0.047381-0 PubMedCrossRefGoogle Scholar
  38. 38.
    Wang X, Huycke MM (2007) Extracellular superoxide production by Enterococcus faecalis promotes chromosomal instability in mammalian cells. Gastroenterology 132(2):551–561. doi:10.1053/j.gastro.2006.11.040 PubMedCrossRefGoogle Scholar
  39. 39.
    Man SM (2011) The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 8(12):669–685. doi:10.1038/nrgastro.2011.191 PubMedCrossRefGoogle Scholar
  40. 40.
    Zheng J, Meng J, Zhao S, Singh R, Song W (2008) Campylobacter-induced interleukin-8 secretion in polarized human intestinal epithelial cells requires Campylobacter-secreted cytolethal distending toxin- and Toll-like receptor-mediated activation of NF-kappaB. Infect Immun 76(10):4498–4508. doi:10.1128/IAI.01317-07 PubMedCrossRefGoogle Scholar
  41. 41.
    Scheppach W, Weiler F (2004) The butyrate story: old wine in new bottles? Curr Opin Clin Nutr Metab Care 7(5):563–567PubMedCrossRefGoogle Scholar
  42. 42.
    Sokol H, Seksik P, Furet JP, Firmesse O, Nion-Larmurier I, Beaugerie L, Cosnes J, Corthier G, Marteau P, Dore J (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15(8):1183–1189. doi:10.1002/ibd.20903 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Na Wu
    • 1
  • Xi Yang
    • 1
  • Ruifen Zhang
    • 1
  • Jun Li
    • 2
  • Xue Xiao
    • 1
  • Yongfei Hu
    • 1
  • Yanfei Chen
    • 3
  • Fengling Yang
    • 3
  • Na Lu
    • 1
  • Zhiyun Wang
    • 1
  • Chunguang Luan
    • 1
  • Yulan Liu
    • 4
  • Baohong Wang
    • 3
  • Charlie Xiang
    • 3
  • Yuezhu Wang
    • 6
  • Fangqing Zhao
    • 5
  • George F. Gao
    • 1
  • Shengyue Wang
    • 6
  • Lanjuan Li
    • 3
  • Haizeng Zhang
    • 2
  • Baoli Zhu
    • 1
  1. 1.CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  2. 2.Department of Abdominal Surgical Oncology, Cancer Institute and HospitalChinese Academy of Medical SciencesBeijingChina
  3. 3.State Key Laboratory for Diagnosis and Treatment of Infectious Disease, The First Affiliated HospitalZhejiang UniversityHangzhouChina
  4. 4.Department of GastroenterologyPeking University People’s HospitalBeijingChina
  5. 5.Beijing Institutes of Life ScienceChinese Academy of SciencesBeijingChina
  6. 6.Chinese National Human Genome Center at ShanghaiShanghaiChina

Personalised recommendations