Microbial Ecology

, Volume 66, Issue 1, pp 105–111 | Cite as

Detection of Methicillin-Susceptible Staphylococcus aureus ST398 and ST133 Strains in Gut Microbiota of Healthy Humans in Spain

  • Daniel Benito
  • Carmen Lozano
  • Elena Gómez-Sanz
  • Myriam Zarazaga
  • Carmen TorresEmail author
Environmental Microbiology


Fecal samples of 100 healthy humans were tested for Staphylococcus aureus recovery. Fifteen samples (15 %) contained S. aureus, all methicillin-susceptible (MSSA), being one isolate/sample further studied. These 15 isolates were characterized by spa and agr typing as well as multi-locus sequence typing. High diversity of spa types (n = 11) and sequences types (n = 8) was detected. Two S. aureus of lineages ST398 or ST133 were detected, and six isolates were ascribed to clonal complex 30 (CC30). Strains were susceptible to most of the 17 antimicrobial agents tested with exceptions: erythromycin/clindamycin (three strains, containing erm(C) and/or erm(A) + mph(C) genes) and tobramycin and mupirocin (one strain containing ant(4′)-Ia + mup(A) genes). The presence of 18 staphylococcal enterotoxin genes was studied by PCR, and isolates were negative for lukF/lukS-PV genes, although strain ST133 harbored the lukD-lukE + lukM genes. Other virulence genes detected were (number of strains): tsst-1 (6), hla (15), hlb (9), hld (15), hlg (6), hlgv (9), cna (2), aur (14), and egc-like cluster (3). Analysis of immune evasion cluster genes showed six types, highlighting their absence in two strains of lineages ST133 and ST5. A high clonal diversity of MSSA strains was identified in the intestinal microbiota of healthy humans, being CC30 the most frequent one. This is the first report of MSSA ST133 and ST398 isolates in gut microbiota of healthy humans.


Mupirocin Clonal Complex mecA Gene Enterotoxin Gene Staphylococcal Scald Skin Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Project SAF2012-35474 from the Ministerio de Economía y Competitividad of Spain. Daniel Benito and Carmen Lozano have a fellowship from the Ministerio de Economía y Competitividad of Spain, and Elena Gómez-Sanz has a fellowship from the Gobierno de La Rioja of Spain.


  1. 1.
    Acton DS, Plat-Sinnige MJ, van Wamel W, de Groot N, van Belkum A (2009) Intestinal carriage of Staphylococcus aureus: how does its frequency compare with that nasal carriage and what is its clinical impact? Eur J Clin Microbiol Infect Dis 28:115–127PubMedCrossRefGoogle Scholar
  2. 2.
    Argudin MA, Argumosa V, Mendoza MC, Guerra B, Rodicio MR (2013) Population structure and exotoxin gene content of methicillin-susceptible Staphylococcus aureus from Spanish healthy carriers. Microb Pathog 54:26–33PubMedCrossRefGoogle Scholar
  3. 3.
    Baker SE, Brecher SM, Robillard E, Strymish J, Lawler E, Gupta K (2010) Extranasal methicillin-resistant Staphylococcus aureus colonization at admission to an acute care Veterans Affairs hospital. Infect Control Hosp Epidemiol 31:42–46PubMedCrossRefGoogle Scholar
  4. 4.
    Bania J, Dabrowska A, Korzekwa K, Zarczynska A, Bystron J, Chrzanowska J, Molenda J (2006) The profiles of enterotoxin genes in Staphylococcus aureus from nasal carriers. Lett Appl Microbiol 42:315–320PubMedCrossRefGoogle Scholar
  5. 5.
    Blaiotta G, Fusco V, von Eiff C, Villani F, Becker K (2006) Biotyping of enterotoxigenic Staphylococcus aureus by enterotoxin gene cluster (egc) polymorphism and spa typing analyses. Appl Environ Microbiol 72:6117–6123PubMedCrossRefGoogle Scholar
  6. 6.
    Comité de l´Antibiogramme de la Societé Française de Microbiologie (CA-SFM): Recommandations 2010 (January 2010 edition) (2010) Accessed 30 July 2012
  7. 7.
    Clinical Laboratory Standards Institute (CLSI) (2009) Performance standards for antimicrobial susceptibility testing. Nineteenth informational supplement (M100-S19). National Committee for Clinical Laboratory Standars, Wayne, PAGoogle Scholar
  8. 8.
    Clinical Laboratory Standards Institute (CLSI) (2011) Performance standards for antimicrobial susceptibility testing. Twenty first informational supplement (M100-S21). National Committee for Clinical Laboratory Standards, Wayne, PAGoogle Scholar
  9. 9.
    Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penadés JR (2001) bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183:2888–2896PubMedCrossRefGoogle Scholar
  10. 10.
    Deurenberg RH, Stobberingh EE (2009) The molecular evolution of hospital and community-associated methicillin-resistant Staphylococcus aureus. Curr Mol Med 9:100–115PubMedCrossRefGoogle Scholar
  11. 11.
    Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13:16–34PubMedCrossRefGoogle Scholar
  12. 12.
    Dominguez E, Zarazaga M, Torres C (2002) Antibiotic resistance in Staphylococcus isolates obtained from faecal samples of healthy children. J Clin Microbiol 40:2638–2641PubMedCrossRefGoogle Scholar
  13. 13.
    Donskey JA (2004) The role of the intestinal tract as a reservoir and source for transmission of nosocomial pathogens. Clin Infect Dis 39:219–226PubMedCrossRefGoogle Scholar
  14. 14.
    European Food Safety Authority (EFSA) (2009) Assessment of the public health significance of methicillin-resistant Staphylococcus aureus (MRSA) in animals and foods. Scientific Opinion of the Panel on Biological Hazards. EFSA J 993:1–73Google Scholar
  15. 15.
    Gharsa H, Ben Sallem R, Ben Slama K, Gómez-Sanz E, Lozano C, Jouini A, Klibi N, Zarazaga M, Boudabous A, Torres C (2012) High diversity of genetic lineages and virulence genes in nasal Staphylococcus aureus isolates from donkeys destined to food consumption in Tunisia with predominance of the ruminant associated CC133 lineage. BMC Vet Res 8:203PubMedCrossRefGoogle Scholar
  16. 16.
    Gómez-Sanz E, Torres C, Lozano C, Fernández-Pérez R, Aspiroz C, Ruiz-Larrea F, Zarazaga M (2010) Detection, molecular characterization, and clonal diversity of methicillin-resistant Staphylococcus aureus CC398 and CC97 in Spanish slaughter pigs of different age groups. Foodborne Pathog Dis 7:1269–1277PubMedCrossRefGoogle Scholar
  17. 17.
    Gómez-Sanz E, Torres C, Lozano C, Zarazaga M (2013) High diversity of Staphylococcus aureus and Staphylococcus pseudintermedius lineages and toxigenic traits in healthy pet-owning household members. Underestimating normal household contact? Comp Immunol Microbiol Dis 36:83–94CrossRefGoogle Scholar
  18. 18.
    Greendyke RM, Constantine HP, Magruder GB, Dean DC, Gardner JH, Morgan HR (1958) Staphylococci on a medical ward, with special reference to fecal carriers. Am J Clin Pathol 30:318–322PubMedGoogle Scholar
  19. 19.
    Grun L (1958) Studies on intestinal staphylococci. Arch Hyg Bakteriol 142:3–7PubMedGoogle Scholar
  20. 20.
    Guinane CM, Ben Zakour NL, Tormo-Mas MA, Weinert LA, Lowder BV, Cartwright RA, Smyth DS, Lindsay JA, Gould KA, Witney A, Hinds J, Bollback JP, Rambaut A, Penadés JR, Fitzgerald JR (2010) Evolutionary genomics of Staphylococcus aureus reveals insights into the origin and molecular basis of ruminant host adaptation. Genome Biol Evol 2:454–466PubMedCrossRefGoogle Scholar
  21. 21.
    Harmsen D, Claus H, Witte W, Rothgänger J, Claus H, Turnwald D, Vogel U (2003) Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41:5442–5448PubMedCrossRefGoogle Scholar
  22. 22.
    Hartman A, Tomasz B (1981) Altered penicillin-binding-proteins in methicillin-resistant strains of Staphylococcus aureus. Antimicrob Agents Chemother 19:726–735PubMedCrossRefGoogle Scholar
  23. 23.
    Hwang SY, Kim SH, Jang EJ, Kwon NH, Park YK, Koo HC, Jung WK, Kim JM, Park YH (2007) Novel multiplex PCR for the detection of the Staphylococcus aureus superantigen and its application to raw meat isolates in Korea. Int J Food Microbiol 117:99–105PubMedCrossRefGoogle Scholar
  24. 24.
    Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, Etienne J, Vandenesch F, Bonneville M, Lina G (2011) egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol 166:669–677Google Scholar
  25. 25.
    Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, Nesme X, Etienne J, Vandenesch F (2002) Relationship between Staphylococcus aureus genetic background virulence factors, agr groups (alleles), and human disease. Infect Immun 70:631–641PubMedCrossRefGoogle Scholar
  26. 26.
    Jernigan JA, Pullen AL, Flowers L, Bell M, Jarvis WR (2003) Prevalence of and risk factors for colonization with methicillin-resistant Staphylococcus aureus at the time of hospital admission. Infect Control Hosp Epidemiol 24:409–414PubMedCrossRefGoogle Scholar
  27. 27.
    Klotz M, Zimmermann S, Opper S, Heeg K, Mutters R (2005) Possible risk for re-colonization with methicillin-resistant Staphylococcus aureus (MRSA) by fecal transmission. Int J Hyg Environ Health 208:401–405PubMedCrossRefGoogle Scholar
  28. 28.
    Lina G, Piémont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Vandenesch F, Etienne J (1999) Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29:1128–1132PubMedCrossRefGoogle Scholar
  29. 29.
    Lowder BV, Guinane CM, Ben Zakour NL, Weinert LA, Conway-Morris A, Cartwright RA, Simpsons AJ, Rambaut A, Nübel U, Fitzgerald JR (2009) Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc Natl Acad Sci USA 106:19545–19550PubMedCrossRefGoogle Scholar
  30. 30.
    Lozano C, Gómez-Sanz E, Benito D, Aspiroz C, Zarazaga M, Torres C (2011) Staphylococcus aureus nasal carriage, virulence traits, antibiotic resistance mechanisms, and genetic lineages in healthy humans in Spain, with detection of CC398 and CC97 strains. Int J Med Microbiol 301:500–505PubMedCrossRefGoogle Scholar
  31. 31.
    Lozano C, Aspiroz C, Lasarte JJ, Gómez-Sanz E, Zarazaga M, Torres C (2011) Dynamic of nasal colonization by methicillin-resistant Staphylococcus aureus ST398 and ST1 after mupirocin treatment in a family in close contact with pigs. Comp Immunol Microbiol Infect Dis 34:1–7CrossRefGoogle Scholar
  32. 32.
    Lozano C, Rezusta A, Gómez P, Gómez-Sanz E, Báez N, Martin-Saco G, Zarazaga M, Torres C (2012) High prevalence of spa types associated with the clonal lineage CC398 among tetracycline-resistant methicillin-resistant Staphylococcus aureus strains in a Spanish hospital. J Antimicrob Chemother 67:330–334PubMedCrossRefGoogle Scholar
  33. 33.
    Masiuk H, Kopron K, Grumann D, Goerke C, Kolata J, Jursa-Kulesza J, Giedrys-Kalemba S, Bröker BM, Holtfreter S (2010) Association of recurrent furunculosis with Panton-Valentine leukocidin and the genetic background of Staphylococcus aureus. J Clin Microbiol 48:1527–1535PubMedCrossRefGoogle Scholar
  34. 34.
    Mégevand C, Gervaix A, Heininger U, Berger C, Aebi C, Vaudaux B, Kind C, Gnehm HP, Hitzler M, Renzi G, Schrenzel J, François P (2010) Molecular epidemiology of the nasal colonization by methicillin-susceptible Staphylococcus aureus in Swiss children. Clin Microbiol Infect 16:1414–1420PubMedCrossRefGoogle Scholar
  35. 35.
    Melles DC, Tenover FC, Kuehnert MJ, Witsenboer H, Peeters JK, Verbrugh HA, van Belkum A (2008) Overlapping population structures of nasal isolates of Staphylococcus aureus from healthy Dutch and American individuals. J Clin Microbiol 46:235–241PubMedCrossRefGoogle Scholar
  36. 36.
    Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersen PS, Pearson T, Waters AE, Foster JT, Schupp J, Gillece J, Driebe E, Liu CM, Springer B, Zdovc I, Battisti A, Franco A, Zmudzki J, Schwarz S, Butaye P, Jouy E, Pomba C, Porrero MC, Ruimy R, Smith TC, Robinson DA, Weese JS, Arriola CS, Yu F, Laurent F, Keim P, Skov R, Aarestrup FM (2012) Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. Mbio 3:e00305–e00311PubMedCrossRefGoogle Scholar
  37. 37.
    Prokesová L, Porwit-Bóbr Z, Baran K, Potempa J, Pospísil M, John C (1991) Effect of metalloproteinase from Staphylococcus aureus on in vitro stimulation of human lymphocytes. Immunol Lett 27:225–230PubMedCrossRefGoogle Scholar
  38. 38.
    Rimland D, Roberson B (1986) Gastrointestinal carriage of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 24:137–138PubMedGoogle Scholar
  39. 39.
    Rooijakkers SH, van Kessel KP, van Strijp AG (2005) Staphylococcal innate immune evasion. Trends Microbiol 13:596–601PubMedCrossRefGoogle Scholar
  40. 40.
    Sabat A, Kosowska K, Poulsen K, Kasprowicz A, Sekowska A, van Den Burg B, Travis J, Potempa J (2000) Two allelic forms of the aureolysin gene (aur) within Staphylococcus aureus. Infect Immun 68:973–976PubMedCrossRefGoogle Scholar
  41. 41.
    Schlotter K, Ehricht R, Hotzel H, Monecke S, Pfeffer M, Donat K (2012) Leukocidin genes lukF-P83 and lukM are associated with staphylococcus aureus clonal complexes 151, 479 and 133 isolated from bovine udder infections in Thuringia, Germany. Vet Res 43:42PubMedCrossRefGoogle Scholar
  42. 42.
    Schnellmann C, Gerber V, Rossano A, Jaquier V, Panchaud Y, Doherr MG, Thomann A, Straub R, Perreten V (2006) Presence of new mecA and mph(C) variants conferring antibiotic resistance in Staphylococcus spp. Isolated from the skin of horses before and after clinic admission. J Clin Microbiol 44:4444–4454PubMedCrossRefGoogle Scholar
  43. 43.
    Shopsin B, Mathema B, Alcabes P, Sais-Salim B, Lina G, Matsuka A, Martinez J, Kreiswirth BN (2003) Prevalence of agr specificity groups among Staphylococcus aureus strains colonizing children and their guardians. J Clin Microbiol 41:456–459PubMedCrossRefGoogle Scholar
  44. 44.
    Udo EE, Al-Sweilh N, Noronha BC (2003) A chromosomal location of the mupA gene in Staphylococcus aureus expressing high-level mupirocin resistance. J Antimicrob Chemother 51:1283–1286PubMedCrossRefGoogle Scholar
  45. 45.
    Van Belkum A, Melles DC, Nouwen J, Leeuwen WB, van Wamel W, Vos MC, Wertheim HF, Verbrught HA (2009) Co-evolutionary aspects of human colonization and infection by Staphylococcus aureus. Infect Genet Evol 9:32–47PubMedCrossRefGoogle Scholar
  46. 46.
    Vandendriessche S, Kadlec K, Schwarz S, Denis O (2011) Methicillin-susceptible Staphylococcus aureus ST398-t571 harbouring the macrolide-lincosamide-streptogramin B resistance gene erm(T) in Belgian hospitals. J Antimicrob Chemother 66:2455–2459PubMedCrossRefGoogle Scholar
  47. 47.
    Van Wamel WJ, Rooijakkers SH, Ruyken M, van Kessel KP, van Strijp JA (2006) The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta hemolysin converting bacteriophages. J Bacteriol 188:1310–1315PubMedCrossRefGoogle Scholar
  48. 48.
    Vautor E, Abadie G, Pont A, Thiery R (2008) Evaluation of the presence of the bap gene in Staphylococcus aureus isolates recovered from human and animal species. Vet Microb 127:407–411CrossRefGoogle Scholar
  49. 49.
    Williams REO (1963) Healthy carriage of Staphylococcus aureus: its prevalence and importance. Bacteriol Rev 27:56PubMedGoogle Scholar
  50. 50.
    Witte W, Strommenger B, Cuny C, Heuck D, Nuebel U (2007) Methicillin resistant Staphylococcus aureus containing the Panton-Valentine leukocidin gene in Germany in 2005 and 2006. J Antimicrob Chemother 60:1258–1263PubMedCrossRefGoogle Scholar
  51. 51.
    Witte W, Strommenger B, Stanek C, Cuny C (2007) Methicillin-resistant Staphylococcus aureus ST398 in humans and animals, Central Europe. Emerg Infect Dis 13:255–258PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniel Benito
    • 1
  • Carmen Lozano
    • 1
  • Elena Gómez-Sanz
    • 1
  • Myriam Zarazaga
    • 1
  • Carmen Torres
    • 1
    Email author
  1. 1.Área Bioquímica y Biología MolecularUniversidad de La RiojaLogroñoSpain

Personalised recommendations