A Beginner’s Guide to Phylogenetics

Abstract

Metagenomics and the development of high throughput next generation sequencing capabilities have forced significant development in the field of phylogenetics: the study of the evolutionary relatedness of the planet’s inhabitants. Herein, I review the major tree-building strategies, challenges and opportunities which exist in this rapidly expanding field of evolutionary biology.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Sleator RD (2011) Phylogenetics. Arch Microbiol 193:235–239. doi:10.1007/s00203-011-0677-x

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Knapp S (2009) On the origin of species by means of natural selection. Nature 460:577–577

    Google Scholar 

  3. 3.

    Sleator RD (2010) An overview of the processes shaping protein evolution. Sci Prog 93:1–6

    PubMed  Article  Google Scholar 

  4. 4.

    Lopez P, Bapteste E (2009) Molecular phylogeny: reconstructing the forest. C R Biol 332:171–182

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Loman NJ, Constantinidou C, Chan JZM, Halachev M, Sergeant M, Penn CW, Robinson ER, Pallen MJ (2012) High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 10:599–606. doi:10.1038/Nrmicro2850

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Rotilio D, Della Corte A, D’Imperio M, Coletta W, Marcone S, Silvestri C, Giordano L, Di Michele M, Donati MB (2012) Proteomics: bases for protein complexity understanding. Thromb Res 129:257–262. doi:10.1016/j.thromres.2011.12.035

    PubMed  Article  CAS  Google Scholar 

  7. 7.

    Sleator RD (2012) Proteins: form and function. Bioeng Bugs 3(2):80–85. doi:10.4161/bbug.18303

    Google Scholar 

  8. 8.

    Sleator RD, Shortall C, Hill C (2008) Metagenomics. Lett Appl Microbiol 47:361–366. doi:10.1111/j.1472-765X.2008.02444.x

  9. 9.

    Naidoo N, Pawitan Y, Soong R, Cooper DN, Ku CS (2011) Human genetics and genomics a decade after the release of the draft sequence of the human genome. Hum Genomics 5:577–622

    PubMed  Article  CAS  Google Scholar 

  10. 10.

    Culligan EP, Sleator RD, Marchesi JR, Hill C (2012) Functional metagenomics reveals novel salt tolerance loci from the human gut microbiome. ISME J 6:1916–1925. doi:10.1038/ismej.2012.38

    PubMed  Article  CAS  Google Scholar 

  11. 11.

    Feeney A, Sleator RD (2012) The human gut microbiome: the ghost in the machine. Future Microbiol 7:1235–1237. doi:10.2217/fmb.12.105

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Manning T, Sleator RD, Walsh P (2013) Naturally selecting solutions: the use of genetic algorithms in bioinformatics. Bioengineered 4(5). doi:10.4161/bioe.23041

  13. 13.

    Forterre P, Gadelle D (2009) Phylogenomics of DNA topoisomerases: their origin and putative roles in the emergence of modern organisms. Nucl Acids Res 37:679–692. doi:10.1093/nar/gkp032

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Yang Z, Rannala B (2012) Molecular phylogenetics: principles and practice. Nat Rev Genet 13:303–314. doi:10.1038/nrg3186

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Kumar S, Filipski AJ, Battistuzzi FU, Kosakovsky Pond SL, Tamura K (2012) Statistics and truth in phylogenomics. Mol Biol Evol 29:457–472. doi:10.1093/molbev/msr202

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Dagan T (2011) Phylogenomic networks. Trends Microbiol 19:483–491. doi:10.1016/j.tim.2011.07.001

    PubMed  Article  CAS  Google Scholar 

  17. 17.

    Lespinats S, Grando D, Marechal E, Hakimi MA, Tenaillon O, Bastien O (2011) How Fitch-Margoliash algorithm can benefit from multi dimensional scaling. Evol Bioinform 7:61–85. doi:10.4137/Ebo.S7048

    Google Scholar 

  18. 18.

    Takahashi K, Nei M (2000) Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol 17:1251–1258

    PubMed  Article  CAS  Google Scholar 

  19. 19.

    Soltis DE, Soltis PS (2003) The role of phylogenetics in comparative genetics. Plant Physiol 132:1790–1800

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Li SY, Pearl DK, Doss H (2000) Phylogenetic tree construction using Markov chain Monte Carlo. J Am Stat Assoc 95:493–508. doi:10.2307/2669394

    Article  Google Scholar 

  21. 21.

    Larget B, Simon DL (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759

    Article  CAS  Google Scholar 

  22. 22.

    Wrobel B (2008) Statistical measures of uncertainty for branches in phylogenetic trees inferred from molecular sequences by using model-based methods. J Appl Genet 49:49–67

    PubMed  Article  Google Scholar 

  23. 23.

    Hernandez Fernandez M, Vrba ES (2005) A complete estimate of the phylogenetic relationships in Ruminantia: a dated species-level supertree of the extant ruminants. Biol Rev Camb Philos Soc 80:269–302

    PubMed  Article  Google Scholar 

  24. 24.

    Brocchieri L (2001) Phylogenetic inferences from molecular sequences: review and critique. Theor Popul Biol 59:27–40. doi:10.1006/tpbi.2000.1485

    PubMed  Article  CAS  Google Scholar 

  25. 25.

    Lawrence JG (2002) Gene transfer in bacteria: speciation without species? Theor Popul Biol 61:449–460

    PubMed  Article  Google Scholar 

  26. 26.

    Puigbo P, Wolf Y, Koonin E (2009) Search for a ‘Tree of Life’ in the thicket of the phylogenetic forest. J Biol 8:59

    PubMed  Article  Google Scholar 

  27. 27.

    Delsuc F, Brinkmann H, Philippe H (2005) Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet 6:361–375

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Karlin S (1998) Global dinucleotide signatures and analysis of genomic heterogeneity. Curr Opin Microbiol 1:598–610

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Pallen MJ, Wren BW (2007) Bacterial pathogenomics. Nature 449:835–842. doi:10.1038/Nature06248

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Bullman S, Lucey B, Sleator RD (2012) Molecular diagnostics: the changing culture of medical microbiology. Bioeng Bugs 3:1–7. doi:10.4161/bbug.3.1.19011

    PubMed  Article  Google Scholar 

  31. 31.

    Dorrell N, Hinchliffe SJ, Wren BW (2005) Comparative phylogenomics of pathogenic bacteria by microarray analysis. Curr Opin Microbiol 8:620–626

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

RDS is coordinator of the FP7-PEOPLE-2012-IAPP grant ClouDx-i.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roy D. Sleator.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sleator, R.D. A Beginner’s Guide to Phylogenetics. Microb Ecol 66, 1–4 (2013). https://doi.org/10.1007/s00248-013-0236-x

Download citation

Keywords

  • Bayesian Inference
  • Maximum Parsimony
  • Lateral Gene Transfer
  • Minimum Evolution
  • Bayesian Inference Method