Skip to main content
Log in

Diversity of Planktonic and Attached Bacterial Communities in a Phenol-Contaminated Sandstone Aquifer

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Polluted aquifers contain indigenous microbial communities with the potential for in situ bioremediation. However, the effect of hydrogeochemical gradients on in situ microbial communities (especially at the plume fringe, where natural attenuation is higher) is still not clear. In this study, we used culture-independent techniques to investigate the diversity of in situ planktonic and attached bacterial communities in a phenol-contaminated sandstone aquifer. Within the upper and lower plume fringes, denaturing gradient gel electrophoresis profiles indicated that planktonic community structure was influenced by the steep hydrogeochemical gradient of the plume rather than the spatial location in the aquifer. Under the same hydrogeochemical conditions (in the lower plume fringe, 30 m below ground level), 16S rRNA gene cloning and sequencing showed that planktonic and attached bacterial communities differed markedly and that the attached community was more diverse. The 16S rRNA gene phylogeny also suggested that a phylogenetically diverse bacterial community operated at this depth (30 mbgl), with biodegradation of phenolic compounds by nitrate-reducing Azoarcus and Acidovorax strains potentially being an important process. The presence of acetogenic and sulphate-reducing bacteria only in the planktonic clone library indicates that some natural attenuation processes may occur preferentially in one of the two growth phases (attached or planktonic). Therefore, this study has provided a better understanding of the microbial ecology of this phenol-contaminated aquifer, and it highlights the need for investigating both planktonic and attached microbial communities when assessing the potential for natural attenuation in contaminated aquifers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alfreider A, Vogt C (2007) Bacterial diversity and aerobic biodegradation potential in a BTEX-contaminated aquifer. Water Air Soil Pollut 183:415–426

    Article  CAS  Google Scholar 

  2. Thornton SF, Quigley S, Spence MJ, Banwart SA, Bottrell S, Lerner DN (2001) Processes controlling the distribution and natural attenuation of dissolved phenolic compounds in a deep sandstone aquifer. J Contam Hydrol 53:233–267

    Article  PubMed  CAS  Google Scholar 

  3. Prommer H, Tuxen N, Bjerg PL (2006) Fringe-controlled natural attenuation of phenoxy acids in a landfill plume: integration of field-scale processes by reactive transport modeling. Environ Sci Technol 40:4732–4738

    Article  PubMed  CAS  Google Scholar 

  4. Pickup RW, Rhodes G, Alamillo ML, Mallinson HEH, Thornton SF, Lerner DN (2001) Microbiological analysis of multi-level borehole samples from a contaminated groundwater system. J Contam Hydrol 53:269–284

    Article  PubMed  CAS  Google Scholar 

  5. Anneser B, Einsiedl F, Meckenstock RU, Richters L, Wisotzky F, Griebler C (2008) High-resolution monitoring of biogeochemical gradients in a tar oil-contaminated aquifer. Appl Geochem 23:1715–1730

    Article  CAS  Google Scholar 

  6. Winderl C, Anneser B, Griebler C, Meckenstock RU, Lueders T (2008) Depth-resolved quantification of anaerobic toluene degraders and aquifer microbial community patterns in distinct redox zones of a tar oil contaminant plume. Appl Environ Microbiol 74:792–801

    Article  PubMed  CAS  Google Scholar 

  7. Wilson RD, Thornton SF, Mackay DM (2004) Challenges in monitoring the natural attenuation of spatially variable plumes. Biodegradation 15:359–369

    Article  PubMed  Google Scholar 

  8. Kappler A, Emerson D, Edwards K, Amend JP, Gralnick JA, Grathwohl P, Hoehler T, Straub KL (2005) Microbial activity in biogeochemical gradients—new aspects of research. Geobiology 3:229–233

    Article  CAS  Google Scholar 

  9. Hazen TC, Jiménez L, de Victoria GL, Fliermans CB (1991) Comparison of bacteria from deep subsurface sediment and adjacent groundwater. Microb Ecol 22:293–304

    Article  Google Scholar 

  10. Holm PE, Nielsen PH, Albrechtsen HJ, Christensen TH (1992) Importance of unattached bacteria and bacteria attached to sediment in determining potentials for degradation of xenobiotic organic contaminants in an aerobic aquifer. Appl Environ Microbiol 58:3020–3026

    PubMed  CAS  Google Scholar 

  11. Wilhartitz IC, Kirschner AKT, Stadler H, Herndl GJ, Dietzel M, Latal C, Mach RL, Farnleitner AH (2009) Heterotrophic prokaryotic production in ultraoligotrophic alpine karst aquifers and ecological implications. FEMS Microbiol Ecol 68:287–299

    Article  PubMed  CAS  Google Scholar 

  12. DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934

    Article  Google Scholar 

  13. Crump BC, Armbrust EV, Baross JA (1999) Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. Appl Environ Microbiol 65:3192–3204

    PubMed  CAS  Google Scholar 

  14. Bakermans C, Madsen EL (2002) Diversity of 16S rDNA and naphthalene dioxygenase genes from coal tar waste contaminated aquifer waters. Microb Ecol 44:95–106

    Article  PubMed  CAS  Google Scholar 

  15. Rooney-Varga JN, Anderson RT, Fraga JL, Ringelberg D, Lovley DR (1999) Microbial communities associated with anaerobic benzene degradation in a petroleum-contaminated aquifer. Appl Environ Microbiol 65:3056–3063

    PubMed  CAS  Google Scholar 

  16. Reardon CL, Cummings DE, Petzke LM, Kinsall BL, Watson DB, Peyton BM, Geesey GG (2004) Composition and diversity of microbial communities recovered from surrogate minerals incubated in an acidic uranium-contaminated aquifer. Appl Environ Microbiol 70:6037–6046

    Article  PubMed  CAS  Google Scholar 

  17. Vrionis HA, Anderson RT, Ortiz-Bernad I, O'Neill KR, Resch CT, Peacock AD, Dayvault R, White DC, Long PE, Lovley DR (2005) Microbiological and geochemical heterogeneity in an in situ uranium bioremediation field site. Appl Environ Microbiol 71:6308–6318

    Article  PubMed  CAS  Google Scholar 

  18. Williams GM, Pickup RW, Thornton SF, Lerner DN, Mallinson HEH, Moore Y, White C (2001) Biogeochemical characterisation of a coal tar distillate plume. J Contam Hydrol 53:175–197

    Article  PubMed  CAS  Google Scholar 

  19. Thornton SF, Lerner DN, Banwart SA (2001) Assessing the natural attenuation of organic contaminants in aquifers using plume-scale electron and carbon balances: model development with analysis of uncertainty and parameter sensitivity. J Contam Hydrol 53:199–232

    Article  PubMed  CAS  Google Scholar 

  20. Manefield M, Griffiths RI, Leigh MB, Fisher R, Whiteley AS (2005) Functional and compositional comparison of two activated sludge communities remediating coking effluent. Environ Microbiol 7:715–722

    Article  PubMed  CAS  Google Scholar 

  21. Cortés-Lorenzo C, Molina-Muñoz ML, Gómez-Villalba B, Vilchez R, Ramos A, Rodelas B, Hontoria E, González-López J (2006) Analysis of community composition of biofilms in a submerged filter system for the removal of ammonia and phenol from industrial wastewater. Biochem Soc Trans 34:165–168

    Article  PubMed  Google Scholar 

  22. Padmanabhan P, Padmanabhan S, DeRito C, Gray A, Gannon D, Snape JR, Tsai CS, Park W, Jeon C, Madsen EL (2003) Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl Environ Microbiol 69:1614–1622

    Article  PubMed  CAS  Google Scholar 

  23. DeRito CM, Pumphrey GM, Madsen EL (2005) Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community. Appl Environ Microbiol 71:7858–7865

    Article  PubMed  CAS  Google Scholar 

  24. Baker KM, Bottrell SH, Thornton SF, Peel KE, Spence MJ (2012) Effect of contaminant concentration on in situ bacterial sulfate reduction and methanogenesis in phenol-contaminated groundwater. Appl Geochem 27:2010–2018

    Article  CAS  Google Scholar 

  25. Elliott DR, Scholes JD, Thornton SF, Rizoulis A, Banwart SA, Rolfe SA (2010) Dynamic changes in microbial community structure and function in phenol-degrading microcosms inoculated with cells from a contaminated aquifer. FEMS Microbiol Ecol 71:247–259

    Article  PubMed  CAS  Google Scholar 

  26. Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ (2000) Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl Environ Microbiol 66:5488–5491

    Article  PubMed  CAS  Google Scholar 

  27. Whiteley AS, Bailey MJ (2000) Bacterial community structure and physiological state within an industrial phenol bioremediation system. Appl Environ Microbiol 66:2400–2407

    Article  PubMed  CAS  Google Scholar 

  28. Muyzer G, Dewaal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    PubMed  CAS  Google Scholar 

  29. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  30. Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, Chichester, pp 115–175

    Google Scholar 

  31. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741

    Article  PubMed  CAS  Google Scholar 

  32. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  PubMed  CAS  Google Scholar 

  33. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145

    Article  PubMed  CAS  Google Scholar 

  34. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  35. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  36. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  37. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Google Scholar 

  38. Aamand J, Jørgensen C, Arvin E, Jensen BK (1989) Microbial adaptation to degradation of hydrocarbons in polluted and unpolluted groundwater. J Contam Hydrol 4:299–312

    Article  CAS  Google Scholar 

  39. Crosby LD, Criddle CS (2003) Understanding bias in microbial community analysis techniques due to rrn operon copy number heterogeneity. Biotechniques 34:790–802

    PubMed  CAS  Google Scholar 

  40. Wintzingerode FV, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21:213–229

    Article  Google Scholar 

  41. Rabus R, Widdel F (1995) Anaerobic degradation of ethylbenzene and other aromatic hydrocarbons by new denitrifying bacteria. Arch Microbiol 163:96–103

    Article  PubMed  CAS  Google Scholar 

  42. Schulze R, Spring S, Amann R, Huber I, Ludwig W, Schleifer KH, Kampfer P (1999) Genotypic diversity of Acidovorax strains isolated from activated sludge and description of Acidovorax defluvii sp. nov. Syst Appl Microbiol 22:205–214

    Article  PubMed  CAS  Google Scholar 

  43. Mechichi T, Stackebrandt E, Gad'on N, Fuchs G (2002) Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp. nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol 178:26–35

    Article  PubMed  CAS  Google Scholar 

  44. Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373

    Article  PubMed  CAS  Google Scholar 

  45. Heinaru E, Truu J, Stottmeister U, Heinaru A (2000) Three types of phenol and p-cresol catabolism in phenol- and p-cresol-degrading bacteria isolated from river water continuously polluted with phenolic compounds. FEMS Microbiol Ecol 31:195–205

    Article  PubMed  CAS  Google Scholar 

  46. Whiteley AS, Wiles S, Lilley AK, Philp J, Bailey MJ (2001) Ecological and physiological analyses of pseudomonad species within a phenol remediation system. J Microbiol Methods 44:79–88

    Article  PubMed  CAS  Google Scholar 

  47. Lovley DR, Giovannoni SJ, White DC, Champine JE, Phillips EJP, Gorby YA, Goodwin S (1993) Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol 159:336–344

    Article  PubMed  CAS  Google Scholar 

  48. Bak F, Widdel F (1986) Anaerobic degradation of phenol and phenol derivatives by Desulfobacterium phenolicum sp. nov. Arch Microbiol 146:177–180

    Article  CAS  Google Scholar 

  49. Franzmann PD, Robertson WJ, Zappia LR, Davis GB (2002) The role of microbial populations in the containment of aromatic hydrocarbons in the subsurface. Biodegradation 13:65–78

    Article  PubMed  CAS  Google Scholar 

  50. Liu A, Garcia-Dominguez E, Rhine ED, Young LY (2004) A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiol Ecol 48:323–332

    Article  PubMed  CAS  Google Scholar 

  51. Ramamoorthy S, Sass H, Langner H, Schumann P, Kroppenstedt RM, Spring S, Overmann J, Rosenzweig RF (2006) Desulfosporosinus lacus sp. nov., a sulfate-reducing bacterium isolated from pristine freshwater lake sediments. Int J Syst Evol Microbiol 56:2729–2736

    Article  PubMed  CAS  Google Scholar 

  52. Watson IA, Oswald SE, Mayer KU, Wu YX, Banwart SA (2003) Modeling kinetic processes controlling hydrogen and acetate concentrations in an aquifer-derived microcosm. Environ Sci Technol 37:3910–3919

    Article  PubMed  CAS  Google Scholar 

  53. Watson IA, Oswald SE, Banwart SA, Crouch RS, Thornton SF (2005) Modeling the dynamics of fermentation and respiratory processes in a groundwater plume of phenolic contaminants interpreted from laboratory- to field-scale. Environ Sci Technol 39:8829–8839

    Article  PubMed  CAS  Google Scholar 

  54. Wartiainen I, Hestnes AG, McDonald IR, Svenning MM (2006) Methylobacter tundripaludum sp. nov., a methane-oxidizing bacterium from Arctic wetland soil on the Svalbard islands, Norway (78°N). Int J Syst Evol Microbiol 56:109–113

    Article  PubMed  CAS  Google Scholar 

  55. Wartiainen I, Hestnes AG, McDonald IR, Svenning MM (2006) Methylocystis rosea sp. nov., a novel methanotrophic bacterium from Arctic wetland soil, Svalbard, Norway (78°N). Int J Syst Evol Microbiol 56:541–547

    Article  PubMed  CAS  Google Scholar 

  56. Watanabe K, Kodama Y, Hamamura N, Kaku N (2002) Diversity, abundance, and activity of archaeal populations in oil-contaminated groundwater accumulated at the bottom of an underground crude oil storage cavity. Appl Environ Microbiol 68:3899–3907

    Article  PubMed  CAS  Google Scholar 

  57. Chen CL, Wu JH, Liu WT (2008) Identification of important microbial populations in the mesophilic and thermophilic phenol-degrading methanogenic consortia. Water Res 42:1963–1976

    Article  PubMed  CAS  Google Scholar 

  58. Yagi JM, Neuhauser EF, Ripp JA, Mauro DM, Madsen EL (2010) Subsurface ecosystem resilience: long-term attenuation of subsurface contaminants supports a dynamic microbial community. ISME J 4:131–143

    Article  PubMed  Google Scholar 

  59. Boll M, Fuchs G, Heider J (2002) Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr Opin Chem Biol 6:604–611

    Article  PubMed  CAS  Google Scholar 

  60. Davey ME, O'Toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  PubMed  CAS  Google Scholar 

  61. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6:199–210

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the site owner for providing access for groundwater sampling. This work was part of the Cell-Mineral Interface Research programme of the University of Sheffield and was funded by the Engineering and Physical Sciences Research Council (grant GR/S72467/01). A.R. gratefully acknowledges support from the Greek State Scholarships Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Rizoulis.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 249 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rizoulis, A., Elliott, D.R., Rolfe, S.A. et al. Diversity of Planktonic and Attached Bacterial Communities in a Phenol-Contaminated Sandstone Aquifer. Microb Ecol 66, 84–95 (2013). https://doi.org/10.1007/s00248-013-0233-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-013-0233-0

Keywords

Navigation