Skip to main content
Log in

Characterization of the Survival Ability of Cupriavidus metallidurans and Ralstonia pickettii from Space-Related Environments

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Four Cupriavidus metallidurans and eight Ralstonia pickettii isolates from the space industry and the International Space Station (ISS) were characterized in detail. Nine of the 12 isolates were able to form a biofilm on plastics and all were resistant to several antibiotics. R. pickettii isolates from the surface of the Mars Orbiter prior to flight were 2.5 times more resistant to UV-C254nm radiation compared to the R. pickettii type strain. All isolates showed moderate to high tolerance against at least seven different metal ions. They were tolerant to medium to high silver concentrations (0.5–4 μM), which are higher than the ionic silver disinfectant concentrations measured regularly in the drinking water aboard the ISS. Furthermore, all isolates survived a 23-month exposure to 2 μM AgNO3 in drinking water. These resistance properties are putatively encoded by their endogenous megaplasmids. This study demonstrated that extreme resistance is not required to withstand the disinfection and sterilization procedures implemented in the ISS and space industry. All isolates acquired moderate to high tolerance against several stressors and can grow in oligotrophic conditions, enabling them to persist in these environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Van Houdt R, Mijnendonckx K, Leys N (2011) Microbial contamination monitoring and control during human space missions. Planetary and Space Science

  2. Pierson DL (2001) Microbial contamination of spacecraft. Gravit Space Biol Bull 14:1–6

    PubMed  CAS  Google Scholar 

  3. Novikova N, De Boever P, Poddubko S, Deshevaya E, Polikarpov N, Rakova N, Coninx I, Mergeay M (2006) Survey of environmental biocontamination on board the International Space Station. Res Microbiol 157:5–12

    Article  PubMed  Google Scholar 

  4. Castro VA, Thrasher AN, Healy M, Ott CM, Pierson DL (2004) Microbial characterization during the early habitation of the International Space Station. Microb Ecol 47:119–126

    Article  PubMed  CAS  Google Scholar 

  5. Van Houdt R, De Boever P, Coninx I, Le Calvez C, Dicasillati R, Mahillon J, Mergeay M, Leys N (2009) Evaluation of the airborne bacterial population in the periodically confined Antarctic base Concordia. Microb Ecol 57:640–648

    Article  PubMed  Google Scholar 

  6. Bruce RJ, Ott CM, Skuratov VM, Pierson DL (2005) Microbial surveillance of potable water sources of the International Space Station. SAE Trans 114:283–292

    Google Scholar 

  7. Klaus DM, Howard HN (2006) Antibiotic efficacy and microbial virulence during space flight. Trends Biotechnol 24:131–136

    Article  PubMed  CAS  Google Scholar 

  8. Newcombe D, Duc ML, Vaishampayan P, Venkateswaran K (2008) Impact of assembly, testing and launch operations on the airborne bacterial diversity within a spacecraft assembly facility clean-room. Int J Astrobiol 7:223–236

    Article  Google Scholar 

  9. La Duc MT, Nicholson W, Kern R, Venkateswaran K (2003) Microbial characterization of the Mars Odyssey spacecraft and its encapsulation facility. Environ Microbiol 5:977–985

    Article  PubMed  Google Scholar 

  10. La Duc MT, Kern R, Venkateswaran K (2004) Microbial monitoring of spacecraft and associated environments. Microb Ecol 47:150–158

    Article  PubMed  Google Scholar 

  11. Ott CM, Bruce RJ, Pierson DL (2004) Microbial characterization of free floating condensate aboard the Mir space station. Microb Ecol 47:133–136

    Article  PubMed  CAS  Google Scholar 

  12. Baker PW, Leff L (2004) The effect of simulated microgravity on bacteria from the Mir space station. Microgravity Sci Technol 15:35–41

    Article  PubMed  Google Scholar 

  13. Goris J, De Vos P, Coenye T, Hoste B, Janssens D, Brim H, Diels L, Mergeay M, Kersters K, Vandamme P (2001) Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51:1773–1782

    Article  PubMed  CAS  Google Scholar 

  14. Ryan MP, Pembroke JT, Adley CC (2006) Ralstonia pickettii: a persistent gram-negative nosocomial infectious organism. J Hosp Infect 62:278–284

    Article  PubMed  CAS  Google Scholar 

  15. Kulakov LA, McAlister MB, Ogden KL, Larkin MJ, O'Hanlon JF (2002) Analysis of bacteria contaminating ultrapure water in industrial systems. Appl Environ Microbiol 68:1548–1555

    Article  PubMed  CAS  Google Scholar 

  16. Wingender J, Flemming HC (2004) Contamination potential of drinking water distribution network biofilms. Water Sci Technol 49:277–286

    PubMed  CAS  Google Scholar 

  17. Van Houdt R, Michiels CW (2010) Biofilm formation and the food industry, a focus on the bacterial outer surface. J Appl Microbiol 109:1117–1131

    Article  PubMed  Google Scholar 

  18. Mergeay M, Monchy S, Janssen P, Van Houdt R, Leys N (2009) Megaplasmids in Cupriavidus genus and metal resistancemicrobial megaplasmids, 1st edn. Springer, Berlin, pp 209–238

    Book  Google Scholar 

  19. Van Houdt R, Monchy S, Leys N, Mergeay M (2009) New mobile genetic elements in Cupriavidus metallidurans CH34, their possible roles and occurrence in other bacteria. Antonie Van Leeuwenhoek 96:205–226

    Article  PubMed  Google Scholar 

  20. Monchy S, Benotmane MA, Janssen P, Vallaeys T, Taghavi S, van der Lelie D, Mergeay M (2007) Plasmids pMOL28 and pMOL30 of Cupriavidus metallidurans are specialized in the maximal viable response to heavy metals. J Bacteriol 189:7417–7425

    Article  PubMed  CAS  Google Scholar 

  21. Schwartz E, Henne A, Cramm R, Eitinger T, Friedrich B, Gottschalk G (2003) Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H(2)-based ithoautotrophy and anaerobiosis. J Mol Biol 332:369–383

    Article  PubMed  CAS  Google Scholar 

  22. Trefault N, De la Iglesia R, Molina AM, Manzano M, Ledger T, Perez-Pantoja D, Sanchez MA, Stuardo M, Gonzalez B (2004) Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environ Microbiol 6:655–668

    Article  PubMed  CAS  Google Scholar 

  23. Mergeay M, Houba C, Gerits J (1978) Extrachromosomal inheritance controlling resistance to cadmium, cobalt, copper and zinc ions: evidence from curing in a Pseudomonas [proceedings]. Arch Int Physiol Biochim 86:440–442

    PubMed  CAS  Google Scholar 

  24. Ralston E, Palleron N, Doudorof M (1973) Pseudomonas-pickettii, a new species of clinical origin related to Pseudomonas-solanacearum. Int J Syst Bacteriol 23:15–19

    Article  Google Scholar 

  25. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, Van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    PubMed  CAS  Google Scholar 

  26. Hulton CS, Higgins CF, Sharp PM (1991) ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol Microbiol 5:825–834

    Article  PubMed  CAS  Google Scholar 

  27. Andrup L, Barfod KK, Jensen GB, Smidt L (2008) Detection of large plasmids from the Bacillus cereus group. Plasmid 59:139–143

    Article  PubMed  CAS  Google Scholar 

  28. O'Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461

    Article  PubMed  Google Scholar 

  29. Christensen GD, Simpson WA, Younger JJ, Baddour LM, Barrett FF, Melton DM, Beachey EH (1985) Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol 22:996–1006

    PubMed  CAS  Google Scholar 

  30. Aertsen A, Van Houdt R, Vanoirbeek K, Michiels CW (2004) An SOS response induced by high pressure in Escherichia coli. J Bacteriol 186:6133–6141

    Article  PubMed  CAS  Google Scholar 

  31. Coohill TP, Sagripanti JL (2008) Overview of the inactivation by 254 nm ultraviolet radiation of bacteria with particular relevance to biodefense. Photochem Photobiol 84:1084–1090

    PubMed  CAS  Google Scholar 

  32. Benardini J, Ballinger J, Crawford RL, Roman M, Sumner R, Venkateswaran K (2005) International Space Station Internal active thermal control system: an initial assessment of the microbial communities within fluid from ground support and flight hardware. SAE International papers 2005-01-3094:1-8

  33. Moissl C, Osman S, La Duc MT, Dekas A, Brodie E, DeSantis T, Venkateswaran K (2007) Molecular bacterial community analysis of clean rooms where spacecraft are assembled. FEMS Microbiol Ecol 61:509–521

    Article  PubMed  CAS  Google Scholar 

  34. Newcombe DA, Schuerger AC, Benardini JN, Dickinson D, Tanner R, Venkateswaran K (2005) Survival of spacecraft-associated microorganisms under simulated martian UV irradiation. Appl Environ Microbiol 71:8147–8156

    Article  PubMed  CAS  Google Scholar 

  35. Osman S, Peeters Z, La Duc MT, Mancinelli R, Ehrenfreund P, Venkateswaran K (2008) Effect of shadowing on survival of bacteria under conditions simulating the Martian atmosphere and UV radiation. Appl Environ Microbiol 74:959–970

    Article  PubMed  CAS  Google Scholar 

  36. Brim H, Heyndrickx M, de Vos P, Wilmotte A, Springael D, Schlegel HG, Mergeay M (1999) Amplified rDNA restriction analysis and further genotypic characterization of metal-resistant soil bacteria and related facultative hydrogenotrophs. Syst Appl Microbiol 22:258–268

    Article  PubMed  CAS  Google Scholar 

  37. Taghavi S, Mergeay M, van der Lelie D (1997) Genetic and physical maps of the Alcaligenes eutrophus CH34 megaplasmid pMOL28 and its derivative pMOL50 obtained after temperature-induced mutagenesis and mortality. Plasmid 37:22–34

    Article  PubMed  CAS  Google Scholar 

  38. Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Medigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M (2010) The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 5:e10433

    Article  PubMed  Google Scholar 

  39. Mijnendonckx K, Provoost A, Monsieurs P, Leys N, Mergeay M, Mahillon J, Houdt RV (2011) Insertion sequence elements in Cupriavidus metallidurans CH34: Distribution and role in adaptation. Plasmid

  40. Lejeune P, Mergeay M, Van Gijsegem F, Faelen M, Gerits J, Toussaint A (1983) Chromosome transfer and R-prime plasmid formation mediated by plasmid pULB113 (RP4::mini-Mu) in Alcaligenes eutrophus CH34 and Pseudomonas fluorescens 6.2. J Bacteriol 155:1015–1026

    PubMed  CAS  Google Scholar 

  41. Mergeay M, Sadouk A, Diels L, Faelen M, Gerits J, Denecke J, Powell B (1987) High-level spontaneous mutagenesis revealed by survival at nonoptimal temperature in Alcaligenes eutrophus CH34. Arch Int Physiol Biochim Biophys 95:B36–B36

    Google Scholar 

  42. Dong Q, Sadouk A, van der Lelie D, Taghavi S, Ferhat A, Nuyten JM, Borremans B, Mergeay M, Toussaint A (1992) Cloning and sequencing of IS1086, an Alcaligenes eutrophus insertion element related to IS30 and IS4351. J Bacteriol 174:8133–8138

    PubMed  CAS  Google Scholar 

  43. Coenye T, Spilker T, Reik R, Vandamme P, Lipuma JJ (2005) Use of PCR analyses to define the distribution of Ralstonia species recovered from patients with cystic fibrosis. J Clin Microbiol 43:3463–3466

    Article  PubMed  CAS  Google Scholar 

  44. Langevin S, Vincelette J, Bekal S, Gaudreau C (2011) First case of invasive human infection caused by Cupriavidus metallidurans. J Clin Microbiol 49:744–745

    Article  PubMed  Google Scholar 

  45. Coenye T, Goris J, Spilker T, Vandamme P, LiPuma JJ (2002) Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J Clin Microbiol 40:2062–2069

    Article  PubMed  Google Scholar 

  46. Van Houdt R, Toussaint A, Ryan M, Pembroke J, Mergeay M, Adley CC (2011) The Tn4371 ICE family of bacterial mobile genetic elements. In: Roberts APMP (ed) Bacterial integrative mobile genetic elements. Landes Bioscience, Austin, Texas

    Google Scholar 

  47. Van Houdt R, Monsieurs P, Mijnendonckx K, Provoost A, Janssen A, Mergeay M, Leys N (2012) Variation in genomic islands contribute to genome plasticity in Cupriavidus metallidurans. BMC Genomics 13:111

    Article  PubMed  Google Scholar 

  48. Anderson RL, Holland BW, Carr JK, Bond WW, Favero MS (1990) Effect of disinfectants on Pseudomonads colonized on the interior surface of PVC pipes. Am J Public Health 80:17–21

    Article  PubMed  CAS  Google Scholar 

  49. Ryan MP, Pembroke JT, Adley CC (2007) Ralstonia pickettii in environmental biotechnology: potential and applications. J Appl Microbiol 103:754–764

    Article  PubMed  CAS  Google Scholar 

  50. Amadou C, Pascal G, Mangenot S, Glew M, Bontemps C, Capela D, Carrere S, Cruveiller S, Dossat C, Lajus A, Marchetti M, Poinsot V, Rouy Z, Servin B, Saad M, Schenowitz C, Barbe V, Batut J, Medigue C, Masson-Boivin C (2008) Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472–1483

    Article  PubMed  CAS  Google Scholar 

  51. Debus A (2006) The European standard on planetary protection requirements. Res Microbiol 157:13–18

    Article  PubMed  Google Scholar 

  52. Venkateswaran K, Kempf M, Chen F, Satomi M, Nicholson W, Kern R (2003) Bacillus nealsonii sp. nov., isolated from a spacecraft-assembly facility, whose spores are gamma-radiation resistant. Int J Syst Evol Microbiol 53:165–172

    Article  PubMed  CAS  Google Scholar 

  53. Venkateswaran K, Satomi M, Chung S, Kern R, Koukol R, Basic C, White D (2001) Molecular microbial diversity of a spacecraft assembly facility. Syst Appl Microbiol 24:311–320

    Article  PubMed  CAS  Google Scholar 

  54. Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattiez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410

    Article  PubMed  CAS  Google Scholar 

  55. Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50:753–789

    Article  PubMed  CAS  Google Scholar 

  56. Finney LA, O'Halloran TV (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300:931–936

    Article  PubMed  CAS  Google Scholar 

  57. Schmidt T, Schlegel HG (1994) Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol 176:7045–7054

    PubMed  CAS  Google Scholar 

  58. Junker B (2009) Corrosion in bioprocessing applications. Bioprocess Biosyst Eng 32:1–29

    Article  PubMed  CAS  Google Scholar 

  59. Roman M, Macuch P, McKrell T, Van der Schijf O (2005) Assessment of microbiologically influenced corrosion potential in the international space station internal active thermal control system heat exchanger materials: a 6-month study. SAE International papers: 1-12

  60. van Hoek AH, Mevius D, Guerra B, Mullany P, Roberts AP, Aarts HJ (2011) Acquired antibiotic resistance genes: an overview. Front Microbiol 2:203

    PubMed  Google Scholar 

  61. Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV (2006) Co-selection of antibiotic and metal resistance. Trends Microbiol 14:176–182

    Article  PubMed  CAS  Google Scholar 

  62. Russell AD, Hugo WB (1994) Antimicrobial activity and action of silver. Prog Med Chem 31:351–370

    Article  PubMed  CAS  Google Scholar 

  63. Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27:341–353

    Article  PubMed  CAS  Google Scholar 

  64. Klasen HJ (2000) A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26:131–138

    Article  PubMed  CAS  Google Scholar 

  65. Yahya MT, Landeen LK, Messina MC, Kutz SM, Schulze R, Gerba CP (1990) Disinfection of bacteria in water systems by using electrolytically generated copper:silver and reduced levels of free chlorine. Can J Microbiol 36:109–116

    Article  PubMed  CAS  Google Scholar 

  66. Lin YS, Vidic RD, Stout JE, Yu VL (2002) Negative effect of high pH on biocidal efficacy of copper and silver ions in controlling Legionella pneumophila. Appl Environ Microbiol 68:2711–2715

    Article  PubMed  CAS  Google Scholar 

  67. Straub J, Plumlee D, Schultz J (2008) Chemical analysis results for potable water returned from ISS expediotions 14 and 15. SAE Int J Aerosp 1:556–577

    Google Scholar 

  68. Lehtola MJ, Miettinen IT, Martikainen PJ (2002) Biofilm formation in drinking water affected by low concentrations of phosphorus. Can J Microbiol 48:494–499

    Article  PubMed  CAS  Google Scholar 

  69. Miettinen IT, Vartiainen T, Martikainen PJ (1997) Phosphorus and bacterial growth in drinking water. Appl Environ Microbiol 63:3242–3245

    PubMed  CAS  Google Scholar 

  70. Jayaraman R (2008) Bacterial persistence: some new insights into an old phenomenon. J Biosci 33:795–805

    Article  PubMed  CAS  Google Scholar 

  71. McAlister MB, Kulakov LA, O'Hanlon JF, Larkin MJ, Ogden KL (2002) Survival and nutritional requirements of three bacteria isolated from ultrapure water. J Ind Microbiol Biotechnol 29:75–82

    Article  PubMed  CAS  Google Scholar 

  72. Alvarez B, Lopez MM, Biosca EG (2008) Survival strategies and pathogenicity of Ralstonia solanacearum phylotype II subjected to prolonged starvation in environmental water microcosms. Microbiology 154:3590–3598

    Article  PubMed  CAS  Google Scholar 

  73. Bennett PM (2008) Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153(Suppl 1):S347–S357

    PubMed  CAS  Google Scholar 

  74. Aminov RI (2011) Horizontal gene exchange in environmental microbiota. Front Microbiol 2:158

    PubMed  Google Scholar 

  75. Stewart PS, Rayner J, Roe F, Rees WM (2001) Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J Appl Microbiol 91:525–532

    Article  PubMed  CAS  Google Scholar 

  76. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  PubMed  CAS  Google Scholar 

  77. Bobe L, Kochetkov A, Soloukhin V, Andreichuk P, Protasov N, Sinyak Y (2008) International conference on environmental systems. SAE International, San Francisco

    Google Scholar 

Download references

Acknowledgments

This work was supported by the European Space Agency (ESA-PRODEX) and the Belgian Science Policy (Belspo) through the COMICS project (C90356). Kristel Mijnendonckx is a Ph.D. student at the Laboratory of Food and Environmental Microbiology (Université catholique de Louvain, Belgium) and at the Unit of Microbiology (SCK•CEN, Belgium). KM is financed through the COMICS project and an AWM Ph.D. grant from SCK•CEN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Van Houdt.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Maximum likelihood phylogenetic tree based upon 16S rRNA gene sequence similarities, showing the place of the space isolates within the Cupriavidus and Ralstonia genera. E. coli ATCC11775 was included as out-group. Numbers at the branches represent percentages of 1,000 bootstrap repetitions (only values above 50 % are shown). Symbols for each strain: type strains (open circle); R. pickettii 12D and 12J (filled circle); isolates from the ISS potable water (filled triangle); ISS cooling water (open triangle); an air filter of the PHSF assembly facility (open diamond) and the surface of the Mars orbiter (open square). GenBank accession numbers are shown in parentheses (JPEG 156 kb)

High Resolution Image 1

(TIFF 706 kb)

Fig. S2

ERIC-PCR for the different C. metallidurans (2–6) and R. pickettii (7–15) isolates showing their clonal relationship. (1) GeneRuler™ 1 kb plus DNA Ladder; (2) C. metallidurans CH34; (3) NA1; (4) NA2; (5) NA4; (6) NE12; (7) R. pickettii ATCC27511; (8) SSH1; (9) SSH2; (10) SSH3; (11) SSH4; (12) CW1; (13) CW2; (14) CW3; (15) CW4 (JPEG 47 kb)

High Resolution Image 1

(TIFF 629 kb)

Fig. S3

Survival of C. metallidurans (ae) and R. pickettii (fm) isolates and species type strains in potable water without (open squares) and with (filled diamonds) 2 μM AgNO3 during a period of 23 months. a C. metallidurans CH34; b NA1; c NA2; d NA4; e NE12; f R. pickettii ATCC27511; g SSH1; h SSH2; i SSH3; j SSH4; k CW1; l CW2; m CW4 (PDF 48 kb)

ESM 4

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mijnendonckx, K., Provoost, A., Ott, C.M. et al. Characterization of the Survival Ability of Cupriavidus metallidurans and Ralstonia pickettii from Space-Related Environments. Microb Ecol 65, 347–360 (2013). https://doi.org/10.1007/s00248-012-0139-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0139-2

Keywords

Navigation