Skip to main content
Log in

Quantifying Salmonella Population Dynamics in Water and Biofilms

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Members of the bacterial genus Salmonella are recognized worldwide as major zoonotic pathogens often found to persist in non-enteric environments including heterogeneous aquatic biofilms. In this study, Salmonella isolates that had been detected repeatedly over time in aquatic biofilms at different sites in Spring Lake, San Marcos, Texas, were identified as serovars Give, Thompson, Newport and -:z10:z39. Pathogenicity results from feeding studies with the nematode Caenorhabditis elegans as host confirmed that these strains were pathogenic, with Salmonella-fed C. elegans dying faster (mean survival time between 3 and 4 days) than controls, i.e., Escherichia coli-fed C. elegans (mean survival time of 9.5 days). Cells of these isolates inoculated into water at a density of up to 106 ml−1 water declined numerically by 3 orders of magnitude within 2 days, reaching the detection limit of our quantitative polymerase chain reaction (qPCR)-based quantification technique (i.e., 103 cells ml−1). Similar patterns were obtained for cells in heterogeneous aquatic biofilms developed on tiles and originally free of Salmonella that were kept in the inoculated water. Cell numbers increased during the first days to more than 107 cells cm−2, and then declined over time. Ten-fold higher cell numbers of Salmonella inoculated into water or into biofilm resulted in similar patterns of population dynamics, though cells in biofilms remained detectable with numbers around 104 cells cm−2 after 4 weeks. Independent of detectability by qPCR, samples of all treatments harbored viable salmonellae that resembled the inoculated isolates after 4 weeks of incubation. These results demonstrate that pathogenic salmonellae were isolated from heterogeneous aquatic biofilms and that they could persist and stay viable in such biofilms in high numbers for some time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1

Similar content being viewed by others

References

  1. Humphrey T (2000) Public-health aspects of Salmonella infection. CABI Publishing, Wallingford

    Google Scholar 

  2. Hoelzer K, Moreno Switt AI, Wiedmann M (2011) Animal contact as a source of human non-typhoidal salmonellosis. Vet Res 42:34–62

    Article  PubMed  Google Scholar 

  3. Sanyal D, Douglas T, Roberts R (1997) Salmonella infection acquired from reptilian pets. Arch Dis Child 77:345–346

    Article  PubMed  CAS  Google Scholar 

  4. Wells EV, Boulton M, Hall W, Bidol SA (2004) Reptile-associated salmonellosis in preschool-aged children in Michigan, January 2001–June 2003. Clin Infect Dis 39:687–691

    Article  PubMed  Google Scholar 

  5. World Health Organization (2002) The world health report. Reducing risks, promoting healthy life. World Health Organization, Geneva, Switzerland

  6. Tauxe RV (1997) Emerging foodborne diseases: an evolving public health challenge. Emerg Infect Dis 3:425–434

    Article  PubMed  CAS  Google Scholar 

  7. Woodward DL, Khakhira R, Johnson WM (1997) Human salmonellosis associated with exotic pets. J Clin Microbiol 35:2786–2790

    PubMed  CAS  Google Scholar 

  8. Cherry WB, Thomason BM, Gladden JB, Holsing N, Murlin AM (1975) Detection of Salmonella in foodstuffs, feces, and water by immunofluorescence. Ann N Y Acad Sci 254:350–368

    Article  PubMed  CAS  Google Scholar 

  9. Cherry WB, Hanks JB, Thomason BM, Murlin AM, Biddle JW, Croom JM (1972) Salmonellae as an index of pollution of surface waters. Appl Microbiol 24:334–340

    PubMed  CAS  Google Scholar 

  10. Jiménez L, Muñiz I, Toranzos GA, Hazen TC (1989) Survival and activity of Salmonella typhimurium and Escherichia coli in tropical freshwater. J Appl Microbiol 67:61–69

    Article  Google Scholar 

  11. Martinez-Urtaza J, Saco M, de Novoa J, Perez-Pineiro P, Peiteado J, Lozano-Leon A, Garcia-Martin O (2004) Influence of environmental factors and human activity on the presence of Salmonella serovars in a marine environment. Appl Environ Microbiol 70:2089–2097

    Article  PubMed  CAS  Google Scholar 

  12. Danyluk MD, Nozawa-Inoue M, Hristova KR, Scow KM, Lampinen B, Harris LJ (2008) Survival and growth of Salmonella Enteritidis PT 30 in almond orchard soils. J Appl Microbiol 104:1391–1399

    Article  PubMed  CAS  Google Scholar 

  13. Cote C, Quessy S (2005) Persistence of Escherichia coli and Salmonella in surface soil following application of liquid hog manure for production of pickling cucumbers. J Food Prot 68:900–905

    PubMed  Google Scholar 

  14. Gaertner JP, Forstner MRJ, Rose FL, Hahn D (2008) Detection of salmonellae in different turtle species within a headwater spring ecosystem. J Wildlife Dis 44:519–526

    CAS  Google Scholar 

  15. Byappanahalli MN, Sawdey R, Ishii S, Shively DA, Ferguson JA, Whitman RL, Sadowsky MJ (2009) Seasonal stability of Cladophora-associated Salmonella in Lake Michigan watersheds. Water Res 43:806–808

    Article  PubMed  CAS  Google Scholar 

  16. Ishii S, Yan T, Shively DA, Byappanahalli MN, Whitman RL, Sadowsky MJ (2006) Cladophora (Chlorophyta) spp. harbor human bacterial pathogens in nearshore water of Lake Michigan. Appl Environ Microbiol 72:4545–4553

    Article  PubMed  CAS  Google Scholar 

  17. Sha Q, Gunathilake A, Forstner MRJ, Hahn D (2011) Temporal analyses of the distribution and diversity of Salmonella in natural biofilms. Syst Appl Microbiol 34:353–359

    Article  PubMed  Google Scholar 

  18. Gaertner JP, Mendoza JA, Forstner MRJ, Hahn D (2011) Recovery of Salmonella from biofilms in a headwater spring ecosystem. J Water Health 9:458–466

    Article  PubMed  CAS  Google Scholar 

  19. Domingo JWS, Fuentes FA, Hazen TC (1989) Survival and activity of Streptococcus faecalis and Escherichia coli in petroleum contaminated tropical marine waters. Environ Poll 56:263–281

    Article  Google Scholar 

  20. Ishii S, Ksoll WB, Hicks RE, Sadowsky MJ (2006) Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds. Appl Environ Microbiol 72:612–621

    Article  PubMed  CAS  Google Scholar 

  21. Semenov AV, van Overbeek L, van Bruggen AH (2009) Percolation and survival of Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium in soil amended with contaminated dairy manure or slurry. Appl Environ Microbiol 75:3206–3215

    Article  PubMed  CAS  Google Scholar 

  22. Byappanahalli MN, Shively DA, Nevers MB, Sadowsky MJ, Whitman RL (2003) Growth and survival of Escherichia coli and enterococci populations in the macro-alga Cladophora (Chlorophyta). FEMS Microbiol Ecol 46:203–211

    Article  PubMed  CAS  Google Scholar 

  23. Ksoll WB, Ishii S, Sadowsky MJ, Hicks RE (2007) Presence and sources of fecal coliform bacteria in epilithic periphyton communities of Lake Superior. Appl Environ Microbiol 73:3771–3778

    Article  PubMed  CAS  Google Scholar 

  24. Watnick PI, Kolter R (1999) Steps in the development of a Vibrio cholerae El Tor biofilm. Mol Microbiol 34:586–595

    Article  PubMed  CAS  Google Scholar 

  25. Yildiz FH, Schoolnik GK (1999) Vibrio cholerae O1 El Tor: identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc Natl Acad Sci USA 96:4028–4033

    Article  PubMed  CAS  Google Scholar 

  26. Topp E, Welsh M, Tien YC, Dang A, Lazarovits G, Conn K, Zhu H (2003) Strain-dependent variability in growth and survival of Escherichia coli in agricultural soil. FEMS Microbiol Ecol 44:303–308

    Article  PubMed  CAS  Google Scholar 

  27. You Y, Rankin SC, Aceto HW, Benson CE, Toth JD, Dou Z (2006) Survival of Salmonella enterica serovar Newport in manure and manure-amended soils. Appl Environ Microbiol 72:5777–5783

    Article  PubMed  CAS  Google Scholar 

  28. Purevdorj B (2002) Hydrodynamic considerations of biofilm structure and behavior. In: Ghannoum, MA, O'Toole, G (eds.) Microbial biofilms. ASM Press, Washington, DC, pp 160–173

  29. Marsollier L, Stinear T, Aubry J, Saint Andre JP, Robert R, Legras P, Manceau AL, Audrain C, Bourdon S, Kouakou H, Carbonnelle B (2004) Aquatic plants stimulate the growth of and biofilm formation by Mycobacterium ulcerans in axenic culture and harbor these bacteria in the environment. Appl Environ Microbiol 70:1097–1103

    Article  PubMed  CAS  Google Scholar 

  30. Aballay A, Yorgey P, Ausubel FM (2000) Salmonella typhimurium proliferates and establishes a persistent infection in the intestine of Caenorhabditis elegans. Curr Biol 10:1539–1542

    Article  PubMed  CAS  Google Scholar 

  31. Labrousse A, Chauvet S, Couillault C, Kurz CL, Ewbank JJ (2000) Caenorhabditis elegans is a model host for Salmonella typhimurium. Curr Biol 10:1543–1545

    Article  PubMed  CAS  Google Scholar 

  32. Zachow C, Pirker H, Westendorf C, Tilcher R, Berg G (2009) The Caenorhabditis elegans assay: a tool to evaluate the pathogenic potential of bacterial biocontrol agents. Eur J Plant Pathol 125:367–376

    Article  CAS  Google Scholar 

  33. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    PubMed  CAS  Google Scholar 

  34. Gaertner JP, Garres T, Becker JC, Jimenez ML, Forstner MRJ, Hahn D (2009) Temporal analyses of salmonellae in a headwater spring ecosystem reveals the effect of precipitation and runoff events. J Water Health 7:115–121

    Article  PubMed  CAS  Google Scholar 

  35. Samant S, Sha Q, Iyer A, Dhabekar P, Hahn D (2012) Quantification of Frankia in soils using SYBR Green based qPCR. System Appl Microbiol 35:191–197

    Article  CAS  Google Scholar 

  36. Von Felten A, Defago G, Maurhofer M (2010) Quantification of Pseudomonas fluorescens strains F113, CHA0 and Pf153 in the rhizosphere of maize by strain-specific real-time PCR unaffected by the variability of DNA extraction efficiency. J Microbiol Methods 81:108–115

    Article  Google Scholar 

  37. Klerks MM, van Bruggen AH, Zijlstra C, Donnikov M (2006) Comparison of methods of extracting Salmonella enterica serovar Enteritidis DNA from environmental substrates and quantification of organisms by using a general internal procedural control. Appl Environ Microbiol 72:3879–3886

    Article  PubMed  CAS  Google Scholar 

  38. Rahn K, De Grandis SA, Clarke RC, McEwen SA, Galán JE, Ginocchio C, Curtiss R, Gyles CL (1992) Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol Cell Probes 6:271–279

    Article  PubMed  CAS  Google Scholar 

  39. Khan AA, Navaz MS, Khan SA, Cerniglia CE (2000) Detection of multidrug-resistant Salmonella typhimurium DT104 by multiplex polymerase chain reaction. FEMS Microbiol Lett 182:355–360

    Article  PubMed  CAS  Google Scholar 

  40. Suárez M, Rüssmann H (1998) Molecular mechanisms of Salmonella invasion: the type III secretion system of the pathogenicity island 1. Interntl Microbiol 1:197–204

    Google Scholar 

  41. Malorny B, Hoorfar J, Bunge C, Helmuth R (2003) Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Appl Environ Microbiol 69:290–296

    Article  PubMed  CAS  Google Scholar 

  42. Hahn D, Amann RI, Ludwig W, Akkermans ADL, Schleifer K-H (1992) Detection of microorganisms in soil after in situ hybridization with rRNA-targeted, fluorescently labelled oligonucleotides. J Gen Microbiol 138:879–887

    Article  PubMed  CAS  Google Scholar 

  43. Jiménez M, Martínez-Urtaza J, Chaidez C (2011) Geographical and temporal dissemination of salmonellae isolated from domestic animal hosts in the Culiacan Valley, Mexico. Microb Ecol 61:811–820

    Article  PubMed  Google Scholar 

  44. Wales AD, McLaren IM, Bedford S, Carrique-Mas JJ, Cook AJ, Davies RH (2009) Longitudinal survey of the occurrence of Salmonella in pigs and the environment of nucleus breeder and multiplier pig herds in England. Vet Rec 165:648–657

    Article  PubMed  CAS  Google Scholar 

  45. Higgins R, Désilets A, Cantin M, Messier S, Khakhria R, Ismaïl J, Mulvey MR, Daignault D, Caron H (1997) Outbreak of Salmonella give in the province of Quebec. Can Vet J 38:780–781

    PubMed  CAS  Google Scholar 

  46. Girardin F, Mezger N, Hächler H, Bovier PA (2006) Salmonella serovar Give: an unusual pathogen causing splenic abscess. Eur J Clin Microbiol Infect Dis 25:272–274

    Article  PubMed  CAS  Google Scholar 

  47. Linares AP, Cohen SH, Goldstein E, Kelley ADK, Eisenstein TK (1984) Febrile gastroenteritis due to Salmonella thompson—report of an outbreak. West J Med 141:203–205

    PubMed  CAS  Google Scholar 

  48. Campbell JV, Mohle-Boetani J, Reporter R, Abbott S, Farrar J, Brandl M, Mandrell R, Werner SB (2001) An outbreak of Salmonella serotype Thompson associated with fresh cilantro. J Infect Dis 183:984–987

    Article  PubMed  CAS  Google Scholar 

  49. Nygård K, Lassen J, Vold L, Andersson Y, Fisher I, Löfdahl S, Threlfall J, Luzzi I, Peters T, Hampton M, Torpdahl M, Kapperud G, Aavitsland P (2008) Outbreak of Salmonella Thompson infections linked to imported rucola lettuce. Foodborne Pathog Dis 5:165–173

    Article  PubMed  Google Scholar 

  50. Schneider JL, White PL, Weiss J, Norton D, Lidgard J, Gould LH, Yee B, Vugia DJ, Mohle-Boetani J (2011) Multistate outbreak of multidrug-resistant Salmonella Newport infections associated with ground beef, October to December 2007. J Food Prot 74:1315–1319

    Article  PubMed  CAS  Google Scholar 

  51. Aballay A, Ausubel FM (2001) Programmed cell death mediated by ced-3 and ced-4 protects Caenorhabditis elegans from Salmonella typhimurium-mediated killing. Proc Natl Acad Sci USA 98:2735–2739

    Article  PubMed  CAS  Google Scholar 

  52. Liang LN, Sinclair JL, Mallory LM, Alexander M (1982) Fate in model ecosystems of microbial species of potential use in genetic engineering. Appl Environ Microbiol 44:708–714

    PubMed  CAS  Google Scholar 

  53. Klein TM, Alexander M (1986) Bacterial inhibitors in lake water. Appl Environ Microbiol 52:114–118

    PubMed  CAS  Google Scholar 

  54. Gurijala KR, Alexander M (1988) Role of sublethal injury in decline of bacterial populations in lake water. Appl Environ Microbiol 54:2859–2861

    PubMed  CAS  Google Scholar 

  55. Scheuerman PR, Schmidt JP, Alexander M (1988) Factors affecting the survival and growth of bacteria introduced into lake water. Arch Microbiol 150:320–325

    Article  PubMed  CAS  Google Scholar 

  56. Kothary MH, Babu US (2001) Infective dose of foodborne pathogens in volunteers: a review. J Food Safety 21:49–73

    Article  Google Scholar 

  57. September SM, Els FA, Venter SN, Broezel VS (2007) Prevalence of bacterial pathogens in biofilms of drinking water ditribution systems. J Water Health 5:219–227

    PubMed  CAS  Google Scholar 

  58. Pachepsky Y, Morrow J, Guber A, Shelton D, Rowland R, Davies G (2012) Effect of biofilm in irrigation pipes on microbial quality of irrigation water. Lett Appl Microbiol 54:217–224

    Article  PubMed  CAS  Google Scholar 

  59. Arnon R, Starosvetzky J, Arbel T, Green M (1997) Survival of Legionella pneumophila and Salmonella typhimurium in biofilm systems. Water Sci Technol 35:293–300

    Google Scholar 

  60. Geesey GG, Mutch R, Costerton JW, Green RB (1978) Sessile bacteria-important component of microbial population in small mountain streams. Limnol Oceanogr 23:1214–1223

    Article  CAS  Google Scholar 

  61. Augspurger C, Gleixner G, Kramer C, Küsel K (2008) Tracking carbon flow in a 2-week-old and 6-week-old stream biofilm food web. Limnol Oceanogr 53:642–650

    Article  CAS  Google Scholar 

  62. Toth JD, Aceto HW, Rankin SC, Dou Z (2011) Survival characteristics of Salmonella enterica serovar Newport in the dairy farm environment. J Dairy Sci 94:5238–5246

    Article  PubMed  CAS  Google Scholar 

  63. Chandran A, Hatha AAM (2005) Relative survival of Escherichia coli and Salmonella typhimurium in a tropical estuary. Water Res 39:1397–1403

    Article  PubMed  CAS  Google Scholar 

  64. Johnson LR (2008) Microcolony and biofilm formation as a survival strategy for bacteria. J Theor Biol 251:24–34

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support from Texas State University, the Department of Biology, and the State of Texas through the American Recovery and Reinvestment Act (ARRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dittmar Hahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sha, Q., Vattem, D.A., Forstner, M.R.J. et al. Quantifying Salmonella Population Dynamics in Water and Biofilms. Microb Ecol 65, 60–67 (2013). https://doi.org/10.1007/s00248-012-0106-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0106-y

Keywords

Navigation