Skip to main content
Log in

Prokaryotic Communities Differ Along a Geothermal Soil Photic Gradient

  • Soil Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Geothermal influenced soils exert unique physical and chemical limitations on resident microbial communities but have received little attention in microbial ecology research. These environments offer a model system in which to investigate microbial community heterogeneity and a range of soil ecological concepts. We conducted a 16S bar-coded pyrosequencing survey of the prokaryotic communities in a diatomaceous geothermal soil system and compared communities across soil types and along a conspicuous photic depth gradient. We found significant differences between the communities of the two different soils and also predictable differences between samples taken at different depths. Additionally, we targeted three ecologically relevant bacterial phyla, Cyanobacteria, Planctomycetes, and Verrucomicrobia, for clade-wise comparisons with these variables and found strong differences in their abundances, consistent with the autecology of these groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Belnap J, Lange O (2003) Biological soil crusts: structure, function, and management. Springer, New York

    Google Scholar 

  2. Bergmann GT, Bates ST, Eilers KG, Lauber CL, Caporaso JG, Walters WA, Knight R, Fierer N (2011) The under-recongnized dominance of Verrucomicrobia in soil bacterial communities. Soil Biol Biochem 43:1450–1455

    Article  PubMed  CAS  Google Scholar 

  3. Bowker M, Maestre F, Escolar C (2009) Biological crusts as model system for examining the biodiversity-ecosystem function relationship in soils. Soil Biol Biochem 42:405–417

    Article  Google Scholar 

  4. Bunn RA, Zabinski CA (2003) Arbuscular mycorrhizae in thermal-influenced soils in Yellowstone National Park. West N Am Nat 63:409–415

    Google Scholar 

  5. Caporaso JG, Bittinger K, Bushman FD, DeSantis TZ, Andersen GL, Knight R (2010) PyNAST: a flexible tool for aligning sequences to a template alignment. Bioinformatics 26:266–267

    Article  PubMed  CAS  Google Scholar 

  6. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Tumbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  PubMed  CAS  Google Scholar 

  7. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://CRAN.R-project.org

  8. Ehrenfeld JG, Ravit B, Elgersma K (2005) Feedback in the plant-soil system. Annu Rev Environ Resour 30:75–115

    Article  Google Scholar 

  9. Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. PNAS 103:626–631

    Article  PubMed  CAS  Google Scholar 

  10. Fierer N, Lennon J (2011) The generation and maintenance of diversity in microbial communities. Am J Bot 98:439–448

    Article  PubMed  Google Scholar 

  11. Hendershot WH, Lalande H, Duquette M (2008) Soil reaction and acidity. In: Carter MR, Gregorich EG (eds) Soil sampling and methods of analysis, vol 2. CRC Press, Boca Raton

    Google Scholar 

  12. Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME 5:1571–1579

    Article  CAS  Google Scholar 

  13. Horner-Devine MC, Bohannan BJM (2006) Phylogenetic clustering and overdispersion in bacterial communities. Ecology 87:100–108

    Article  Google Scholar 

  14. Housman DC, Powers HH, Collins AD, Belnap J (2006) Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan Desert. J Arid Environ 66:620–634

    Article  Google Scholar 

  15. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    Article  PubMed  CAS  Google Scholar 

  16. Kuczynski J, Liu ZZ, Lozupone C, McDonald D, Fierer N, Knight R (2010) Microbial community resemblance methods differ in their ability to detect biologically relevant patterns. Nat Methods 7:813–821

    Article  PubMed  CAS  Google Scholar 

  17. Lauber CL, Hamady M, Knight R, Fierer N (2009) Soil pH as a predictor of soil bacterial community structure at the continental scale: a pyrosequencing-based assessment. Appl Environ Microbiol 75:5111–5120

    Article  PubMed  CAS  Google Scholar 

  18. Liu Z, Lozupone CA, Hamady M, Bushman FD, Knight R (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35:e120

    Article  PubMed  Google Scholar 

  19. Lozupone CA, Hamady M, Knight R (2006) UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinforma 7:371

    Article  Google Scholar 

  20. Madigan MT, Martinko JM, Dunlap PV, Clark DV (2008) Brock biology of microorganisms, 12th edn. Pearson Higher Education, New York

    Google Scholar 

  21. Meadow JF, Zabinski CA (2012) Spatial heterogeneity of eukaryotic microbial communities in an unstudied geothermal diatomaceous biological soil crust: Yellowstone National Park, WY, USA. FEMS Microbiol Ecol. doi:10.1111/j.1574-6941.2012.01416.x

  22. Oksanen J, Blanchet FG, Kindt R, Legendre P, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2011) Vegan: community ecology package. http://CRAN.R-project.org/package=vegan, R package version 1.17-6

  23. Philippot L, Andersson SVE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S (2011) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8:523–529

    Article  Google Scholar 

  24. Price MN, Dehal PS, Arkin AP (2009) FastTree: computing large minimum-evolution trees with profiles instead of a distance matrix. Mol Biol Evol 26:1641–1650

    Article  PubMed  CAS  Google Scholar 

  25. Roberts DW (1986) Ordination on the basis of fuzzy set theory. Vegetatio 66:123–131

    Article  Google Scholar 

  26. Roberts DW (2008) Statistical analysis of multidimensional fuzzy set ordinations. Ecology 89

  27. Roberts DW (2010a) fso: fuzzy set ordination. http://CRAN.R-project.org/package=fso, R package version 1.2-0

  28. Roberts DW (2010b) labdsv: ordination and multivariate analysis for ecology. http://CRAN.R-project.org/package=labdsv, R package version 1.4-1

  29. Rowe JJ, Fournier RO, Morey GW (1973) Chemical analysis of thermal waters in Yellowstone National Park, Wyoming, 1960–65. Geological Survey Bulletin 1303, Department of the Interior

  30. Tamura K, Peterson D, Peterson N, Stencher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using likelihood, distance, and parsomony methods. Mol Biol Evol 28:38–44

    Article  Google Scholar 

  31. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557

    Article  PubMed  CAS  Google Scholar 

  32. Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotechnological and medical relavance. Curr Opin Biotechnol 17:241–249

    Article  PubMed  CAS  Google Scholar 

  33. Wardle DA (2002) Communities and ecosystems: linking the aboveground and belowground components. Number 34 in Monographs in population biology. Princeton University Press

  34. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Google Scholar 

  35. Yeomans JC, Bremner JM (1991) Carbon and nitrogen analysis of soils by automated combustion techniques. Commun Soil Sci Plant Anal 22:843–850

    Article  CAS  Google Scholar 

  36. Zak DR, Holmes WE, White DC, Peacock AD, Tilman D (2003) Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84:2042–2050

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Yellowstone National Park permit personnel for help with permitting; to the Grand Teton Association for financial support through the Boyd Evison Graduate Fellowship to JM; to the Institute on Ecosystems for financial support through a Dissertation Fellowship to JM; to D. Skorupa, S. Clingenpeel, and T. R. McDermott for their help with primer design, barcoding, and amplification; and to R. Castenholz for assistance with irradiance measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James F. Meadow.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure 1

Comparison of phylogenetic unweighted UniFrac distances to qualitative Ochiai (a) and quantitative Canberra (b). Correlation coefficients (r values) indicate that limited additional information was gained by considering phylogenetic relationships (JPEG 45 kb)

High resolution image (TIFF 17805 kb)

ESM 1

(TXT 2 kb)

ESM 2

(TXT 2 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meadow, J.F., Zabinski, C.A. Prokaryotic Communities Differ Along a Geothermal Soil Photic Gradient. Microb Ecol 65, 171–179 (2013). https://doi.org/10.1007/s00248-012-0103-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0103-1

Keywords

Navigation