Skip to main content

Advertisement

Log in

Characterization of the Bacterial Diversity in Indo-West Pacific Loliginid and Sepiolid Squid Light Organs

  • Host Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Loliginid and sepiolid squid light organs are known to host a variety of bacterial species from the family Vibrionaceae, yet little is known about the species diversity and characteristics among different host squids. Here we present a broad-ranging molecular and physiological analysis of the bacteria colonizing light organs in loliginid and sepiolid squids from various field locations of the Indo-West Pacific (Australia and Thailand). Our PCR-RFLP analysis, physiological characterization, carbon utilization profiling, and electron microscopy data indicate that loliginid squid in the Indo-West Pacific carry a consortium of bacterial species from the families Vibrionaceae and Photobacteriaceae. This research also confirms our previous report of the presence of Vibrio harveyi as a member of the bacterial population colonizing light organs in loliginid squid. pyrH sequence data were used to confirm isolate identity, and indicates that Vibrio and Photobacterium comprise most of the light organ colonizers of squids from Australia, confirming previous reports for Australian loliginid and sepiolid squids. In addition, combined phylogenetic analysis of PCR-RFLP and 16S rDNA data from Australian and Thai isolates associated both Photobacterium and Vibrio clades with both loliginid and sepiolid strains, providing support that geographical origin does not correlate with their relatedness. These results indicate that both loliginid and sepiolid squids demonstrate symbiont specificity (Vibrionaceae), but their distribution is more likely due to environmental factors that are present during the infection process. This study adds significantly to the growing evidence for complex and dynamic associations in nature and highlights the importance of exploring symbiotic relationships in which non-virulent strains of pathogenic Vibrio species could establish associations with marine invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Nishiguchi MK, Nair VS (2003) Evolution of symbioses in the Vibrionaceae: a combined approach using molecules and physiology. Int J Syst Evol Micr 53:2019–2026

    Article  CAS  Google Scholar 

  2. Farmer JJ III, Janda JM, Brenner FW, Cameron DN, Birkhead KM (2005) Genus I. Vibrio Pacini 1854, 411AL. In: Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds) Bergey’s manual of systematic bacteriology, vol 2. Springer, New York, pp 494–546

    Google Scholar 

  3. Dikow RB (2010) Systematic relationships within the Vibrionaceae (Bacteria: Gammaproteobacteria): steps toward a phylogenetic taxonomy. Cladistics 27:9–28

    Article  Google Scholar 

  4. Thompson FL, Hoste B, Vandemeulebroecke K, Swings J (2001) Genomic diversity amongst Vibrio isolates from different sources determined by fluorescent amplified fragment length polymorphism. Syst Appl Microbiol 24:520–538

    Article  PubMed  CAS  Google Scholar 

  5. Jones BW, Nishiguchi MK (2004) Counterillumination in the bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar Biol 144:1151–1155

    Article  Google Scholar 

  6. Dunlap PV, McFall-Ngai MJ (1987) Initiation and control of the bioluminescent symbiosis between Photobacterium leiognathi and the leiognathid fishes. In: Lee, JJ, Frederick, JF (eds.) Proceedings of the New York Academy of Sciences Symposium on Endosymbiosis, pp. 269–283

  7. Fidopiastis PM, Boletzky Sv, Ruby EG (1998) A new niche for Vibrio logei, the predominant light organ symbiont of squids in the genus Sepiola. J Bacteriol 180:59–64

    PubMed  CAS  Google Scholar 

  8. Colwell RR, Huq A (1994) Vibrios in the environment: viable but nonculturable Vibrio cholerae. In: Wachsmuth IK, Blake PA, Olsvik O (eds) Vibrio cholerae and cholera: molecular and global perspectives. American Society of Microbiology Press, Washington, D.C., pp 117–133

    Google Scholar 

  9. Yumoto II, Iwata H, Sawabe T, Ueno K, Ichise N, Matsuyama H, Okuyama H, Kawasaki K (1999) Characterization of a facultatively psychrophilic bacterium, Vibrio rumoiensis sp. nov., that exhibits high catalase activity. Appl Environ Microbiol 65:67–72

    PubMed  CAS  Google Scholar 

  10. Ruby EG, Morin JG (1979) Luminous enteric bacteria of marine fishes: a study of their distribution, densities, and dispersion. Appl Environ Microbiol 38:406–411

    PubMed  CAS  Google Scholar 

  11. Ruby EG, Nealson KH (1976) Symbiotic associations of Photobacterium fischeri with the marine luminous fish Monocentris japonica: a model of symbiosis based on bacterial studies. Biol Bull 151:574–586

    Article  PubMed  CAS  Google Scholar 

  12. Guerrero-Ferreira RC, Nishiguchi MK (2007) Biodiversity among luminescent symbionts from squid of the genera Uroteuthis, Loliolus and Euprymna (Mollusca: Cephalopoda). Cladistics 23:497–506

    Article  PubMed  Google Scholar 

  13. Stabili L, Gravili C, Piraino S, Boero F, Alifano P (2006) Vibrio harveyi associated with Aglaophenia octodonta (Hydrozoa, Cnidaria). Microb Ecol 52:603–608

    Article  PubMed  CAS  Google Scholar 

  14. Foster JS, Boletzky Sv, McFall-Ngai MJ (2002) A comparison of the light organ development of Sepiola robusta Naef and Euprymna scolopes Berry (Cephalopoda: Sepiolidae). Bull Mar Sci 70:141–153

    Google Scholar 

  15. Dalsgaard A, Serichantalergs O, Forslund A, Lin W, Mekalanos J, Mintz E, Shimida T, Wells AJG (2001) Clinical and environmental isolates of Vibrio cholerae serogroup O141 carry the CTX phage and the genes encoding the toxin-coregulated pili. J Clin Microbiol 39:4086–4092

    Article  PubMed  CAS  Google Scholar 

  16. Huq A, Small EB, West PA, Huq MI, Rahman R, Colwell RR (1983) Ecological relationships between Vibrio cholerae and planktonic crustacean copepods. Appl Environ Microbiol 45:275–283

    PubMed  CAS  Google Scholar 

  17. DePaola A, Ulaszek J, Kaysner CA, Tenge BJ, Nordstrom JL, Wells J, Puhr N, Gendel SM (2003) Molecular, serological, and virulence characteristics of Vibrio parahaemolyticus isolated from environmental, food, and clinical sources in North America and Asia. Appl Environ Microbiol 69:3999–4005

    Article  PubMed  CAS  Google Scholar 

  18. Alcaide E, Amaro C, Todoli R, Oltra R (1999) Isolation and characterization of Vibrio parahaemolyticus causing infection in Iberian toothcarp Aphanius iberus. Dis Aquat Organ 35:77–80

    Article  PubMed  CAS  Google Scholar 

  19. Alcaide E, Gil-Sanz C, Sanjuan E, Esteve D, Amaro C, Silveira L (2001) Vibrio harveyi causes disease in seahorse, Hippocampus sp. J Fish Dis 24:311–313

    Article  Google Scholar 

  20. Alcaide E, Sanjuan E, del Ganaa F, Garcia-Gomez A (2000) Susceptibility of Amberjack (Seriola dumerili) to bacterial fish pathogens. Bull Eur Ass Fish Pathol 20:153–156

    Google Scholar 

  21. Banin E, Israely T, Kushmaro A, Loya Y, Orr E, Rosenberg E (2000) Penetration of the coral-bleaching bacterium Vibrio shiloi into Oculina patagonica. Appl Environ Microbiol 66:3031–3036

    Article  PubMed  CAS  Google Scholar 

  22. Ben-Haim Y, Zicherman-Keren M, Rosenberg E (2003) Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl Environ Microbiol 69:4236–4242

    Article  PubMed  CAS  Google Scholar 

  23. Stelma GN Jr, Reyes AL, Peeler JT, Johnson CH, Spaulding PL (1992) Virulence characteristics of clinical and environmental isolates of Vibrio vulnificus. Appl Envrion Microbiol 52:2776–2782

    Google Scholar 

  24. Aznar R, Ludwig W, Amann RI, Schleifer KH (1994) Sequence determination of rRNA genes of pathogenic Vibrio species and whole-cell identification of Vibrio vulnificus with rRNA-targeted oligonucleotide probes. Int J Syst Bacteriol 44:330–337

    Article  PubMed  CAS  Google Scholar 

  25. Owens L, Busico-Salcedo N (2006) Vibrio harveyi: pretty problems in paradise. In: Thompson FL (ed) The biology of vibrios. ASM Press, Washington, D.C., pp 266–280

    Google Scholar 

  26. Vidgen M, Carson J, Higgins M, Owens L (2006) Changes to the phenotypic profile of Vibrio harveyi when infected with the Vibrio harveyi myovirus-like (VHML) bacteriophage. J Appl Microbiol 100:481–487

    Article  PubMed  CAS  Google Scholar 

  27. Dunlap PV, Davis KM, Tomiyama S, Fujino M, Fukui A (2008) Developmental and microbiological analysis of the inception of bioluminescent symbiosis in the marine fish Nuchequula nuchalis (Perciformes: Leiognathidae). Appl Environ Microbiol 74:7471–7481

    Article  PubMed  CAS  Google Scholar 

  28. Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522

    PubMed  CAS  Google Scholar 

  29. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788

    Article  PubMed  CAS  Google Scholar 

  30. Ward DM, Weller R, Bateson MM (1990) 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345:63

    Article  PubMed  CAS  Google Scholar 

  31. Guerrero-Ferreira RC, Nishiguchi MK (2009) Ultrastructure of light organs of loliginid squids and their bacterial symbionts: a novel system for the study of marine symbioses. Vie et Milieu 59:307–313

    PubMed  Google Scholar 

  32. Jamann S, Fernandez MP, Normand P (1993) Typing method for N2-fixing bacteria based on PCR-RFLP-application to the characterization of Frankia strains. Mol Ecol 2:17–26

    Article  PubMed  CAS  Google Scholar 

  33. Urakawa H, Kita-Tsukamoto K, Ohwada K (1997) 16S rDNA genotyping using PCR/RFLP (restriction fragment length polymorphism) analysis among the family Vibrionaceae. FEMS Microbiol Lett 152:125–132

    Article  PubMed  CAS  Google Scholar 

  34. Urakawa H, Kita-Tsukamoto K, Ohwada K (1998) A new approach to separate the genus Photobacterium from Vibrio with RFLP patterns by HhaI digestion of PCR-amplified 16S rDNA. Curr Microbiol 36:171–174

    Article  PubMed  CAS  Google Scholar 

  35. Urakawa H, Kita-Tsukamoto K, Ohwada K (1999) 16S rDNA restriction fragment length polymorphism analysis of psychrotrophic vibrios from Japanese coastal water. Can J Microbiol 45:1001–1007

    Article  PubMed  CAS  Google Scholar 

  36. Urakawa H, Kita-Tsukamoto K, Ohwada K (1999) Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145(Pt 11):3305–3315

    PubMed  CAS  Google Scholar 

  37. Yoshimura S, Yoshimura A, Saito A, Kishmoto N, Kawase M, Yano M, Nakagahra M, Ogawa T, Iwata N (1992) RFLP analysis of introgressed chromosomal segments in three near-isogenic lines of rice for bacterial blight resistance genes, Xa-1, Xa-3 and Xa-4. Jpn J Genet 67:29–37

    Article  CAS  Google Scholar 

  38. Marhual NP, Das BK (2009) Use of random amplified polymorphic DNA and restriction fragment length polymorphism for typing of Vibrio alginolyticus isolated from black tiger shrimp Penaeus monodon. J Pure Appl Microbiol 3:75–82

    CAS  Google Scholar 

  39. Nishiguchi MK, Lopez JE, Boletzky Sv (2004) Enlightenment of old ideas from new investigations: more questions regarding the evolution of bacteriogenic light organs in squids. Evol Dev 6:41–49

    Article  PubMed  CAS  Google Scholar 

  40. Wheeler WC (1996) Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics 12:1–9

    Article  Google Scholar 

  41. Wheeler WC (1998) Alignment characters, dynamic programming and heuristic solutions. In: DeSalle R, Schierwater B (eds) Molecular approaches to ecology and evolution, vol 1. Birkhauser Verlag, Basel, pp 243–251

    Chapter  Google Scholar 

  42. Wheeler WC, Gladstein D, DeLaet J (2002) POY v. 3.0

  43. Wheeler WC (1995) Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Syst Biol 44:321–331

    Google Scholar 

  44. Alsina M, Blanch AR (1994) Improvement and update of a set of keys for biochemical identification of Vibrio species. J Appl Bacteriol 77:719–721

    Article  CAS  Google Scholar 

  45. Allen RD, Baumann P (1971) Structure and arrangement of flagella in species of the genus Beneckea and Photobacterium fischeri. J Bacteriol 107:295–302

    PubMed  CAS  Google Scholar 

  46. Baumann P, Baumann L, Bang SS, Woolkalis MJ (1980) Reevaluation of the taxonomy of Vibrio, Beneckea, and Photobacterium: abolition of the genus Beneckea. Curr Microbiol 4:127–132

    Article  Google Scholar 

  47. Kidron H, Repo S, Johnson MS, Salminen TA (2007) Functional classification of amino acid decarboxylases from the alanine racemase structural family by phylogenetic studies. Mol Biol Evol 24:79–89

    Article  PubMed  CAS  Google Scholar 

  48. Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD, Oliveira MA (2006) Polyamines are essential for the formation of plague biofilm. J Bacteriol 188:2355–2363

    Article  PubMed  CAS  Google Scholar 

  49. Karatan E, Duncan TR, Watnick PI (2005) NspS, a predicted polyamine sensor, mediates activation of Vibrio cholera biofilm formation by norspermidine. J Bacteriol 187:7434–7443

    Google Scholar 

  50. Jones BW, Nishiguchi MK (2006) Differentially expressed genes reveal adaptations between free-living and symbiotic niches of Vibrio fischeri in a fully established mutualism. Can J Microbiol 52:1218–1227

    Article  PubMed  CAS  Google Scholar 

  51. Ariyakumar DS, Nishiguchi MK (2009) Characterization of two host-specific genes, mannose-sensitive hemagglutinin (mshA) and uridyl phosphate dehydrogenase (UDPDH) that are involved in the Vibrio fischeri–Euprymna tasmanica mutualism. FEMS Microbiol Lett 299:65–73

    Article  PubMed  CAS  Google Scholar 

  52. Merrell DS, Hava DL, Camilli A (2002) Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol 43:1471–1491

    Article  PubMed  CAS  Google Scholar 

  53. Guerrero-Ferreira RC, Nishiguchi MK (2010) Differential gene expression in bacterial symbionts from loliginid squids demonstrates variation between mutualistic and environmental niches. Environ Microbiol Rep 2:514–523

    Article  PubMed  CAS  Google Scholar 

  54. Graf J (1999) Symbiosis of Aeromonas veronii Biovar sobria and Hirudo medicinalis, the medicinal leech: a novel model for digestive tract associations. Infect Immun 67:1–7

    PubMed  CAS  Google Scholar 

  55. Siddall ME, Worthen PL, Johnson M, Graf J (2007) Novel role for Aeromonas jandaei as a digestive tract symbiont of the North American medicinal leech. Appl Environ Microbiol 73:655–658

    Article  PubMed  CAS  Google Scholar 

  56. Hickman-Brenner FW, MacDonald KL, Steigerwalt AG, Fanning GR, Brenner DJ, Farmer JJ III (1987) Aeromonas veronii, a new ornithine decarboxylase-positive species that may cause diarrhea. J Clin Microbiol 25:900–906

    PubMed  CAS  Google Scholar 

  57. McCarter LL (2006) Motility and chemotaxis. In: Thompson FL, Austin B, Swings J (eds) The biology of vibrios. ASM Press, Washington, D.C., p 423

    Google Scholar 

  58. Pollock FJ, Wilson B, Johnson WR, Morris PJ, Willis BL, Bourne DG (2010) Phylogeny of the coral pathogen Vibrio coralliilyticus. Environ Microbiol Rep 2:172–178

    Article  CAS  Google Scholar 

  59. Bleicher A, Neuhaus K, Scherer S (2010) Vibrio casei sp. nov., isolated from the surface of two French red smear soft cheeses. Int J Syst Evol Microbiol 60:1745–1749

    Article  PubMed  CAS  Google Scholar 

  60. Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, Munn CB, Swings J (2005) Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71:5107–5115

    Article  PubMed  CAS  Google Scholar 

  61. Jones BW, Lopez JE, Huttenburg J, Nishiguchi MK (2006) Population structure between environmentally transmitted vibrios and bobtail squids using nested clade analysis. Mol Ecol 15:4317–4329

    Article  PubMed  CAS  Google Scholar 

  62. Kita-Tsukamoto K, Wada M, Yao K, Kamiya A, Yoshizawa S, Uchiyama N, Kogure K (2006) Rapid identification of marine bioluminescent bacteria by amplified 16S ribosomal RNA gene restriction analysis. FEMS Microbiol Lett 256:298–303

    Article  PubMed  CAS  Google Scholar 

  63. Visick KL, Ruby EG (1998) The periplasmic, group III catalase of Vibrio fischeri is required for normal symbiotic competence and is induced both by oxidative stress and by approach to stationary phase. J Bacteriol 180:2087–2092

    PubMed  CAS  Google Scholar 

  64. Ast JC, Cleenwerck I, Engelbeen K, Urbanczyk H, Thompson FL, De Vos P, Dunlap PV (2007) Photobacterium kishitanii sp. nov., a luminous marine bacterium symbiotic with deep-sea fishes. Int J Syst Evol Microbiol 57:2073–2078

    Article  PubMed  CAS  Google Scholar 

  65. Goloboff PA (1999) Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics 15:415–428

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Nabhitabhata for help collecting specimens in Rayong and Phuket, Thailand and Rami Al-Khatib from the Electron Microscopy facility at NMSU for help with the Electron Microscopy work. E. Shipp collaborated with DNA amplification and sequencing. Phylogenetic analyses were analyzed on the NetBSD biology computer system at NMSU. This work was supported in part by NIH- SO6 GM008136-32 S2, NIH-NIAID 1SC1AI081659, NSF IOS-0744498, and NSF-DBI-0520956 to M.K.N. Support for C. Gorman and A. Chavez was provided by the NIH-MBRS RISE (NIH-GM-61222-01) and C. Gorman was also supported by the NMSU MARC program (NIH-T34GMO7667-34). S. Willie and E. Shipp were supported by the BRIDGES to Native American Students program (NIH-R25 GM48998) at New Mexico State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele K. Nishiguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero-Ferreira, R., Gorman, C., Chavez, A.A. et al. Characterization of the Bacterial Diversity in Indo-West Pacific Loliginid and Sepiolid Squid Light Organs. Microb Ecol 65, 214–226 (2013). https://doi.org/10.1007/s00248-012-0099-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0099-6

Keywords

Navigation