Microbial Community Compositional Shifts in Bleached Colonies of the Brazilian Reef-Building Coral Siderastrea stellata

Abstract

The association of metazoan, protist, and microbial communities with Scleractinian corals forms the basis of the coral holobiont. Coral bleaching events have been occurring around the world, introducing changes in the delicate balance of the holobiont symbiotic interactions. In this study, Archaea, bacteria, and eukaryotic phototrophic plastids of bleached colonies of the Brazilian coral Siderastrea stellata were analyzed for the first time, using 16S rRNA gene libraries. Prokaryotic communities were slightly more diverse in healthy than in bleached corals. However, the eukaryotic phototrophic plastids community was more diverse in bleached corals. Archaea phylogenetic analyses revealed a high percentage of Crenarchaeota sequences, mainly related to Nitrosopumilus maritimus and Cenarchaeum symbiosum. Dramatic changes in bacterial community composition were observed in this bleaching episode. The dominant bacterial group was Alphaproteobacteria followed by Gammaproteobacteria in bleached and Betaproteobacteria in healthy samples. Plastid operational taxonomic units (OTUs) from both coral samples were mainly related to red algae chloroplasts (Florideophycea), but we also observed some OTUs related to green algae chloroplasts (Chlorophyta). There seems to be a strong relationship between the Bacillariophyta phylum and our bleached coral samples as clones related to members of the diatom genera Amphora and Nitzschia were detected. The present study reveals information from a poorly investigated coral species and improves the knowledge of coral microbial community shifts that could occur during bleaching episodes.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1.

    Douglas AE (2003) Coral bleaching––how and why? Mar Pollut Bull 46:385–392

    PubMed  Article  CAS  Google Scholar 

  2. 2.

    Glynn PW (1993) Coral reef bleaching: ecological perspectives. Coral Reefs 12:1–17

    Article  Google Scholar 

  3. 3.

    Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:129–138

    Article  Google Scholar 

  4. 4.

    Sammarco PW, Winter A, Stewartn JC (2006) Coefficient of variation of sea surface temperature (SST) as an indicator of coral bleaching. Mar Biol 149:1377–1344

    Article  Google Scholar 

  5. 5.

    Burt J, Bartholomew A, Usseglio P (2008) Recovery of corals a decade after a bleaching event in Dubai, United Arab Emirates. Mar Biol 154:27–36

    Article  Google Scholar 

  6. 6.

    Jones RJ (2008) Coral bleaching, bleaching-induced mortality, and the adaptive significance of the bleaching response. Mar Biol 154:65–80

    Article  Google Scholar 

  7. 7.

    Mao-Jones J, Ritchie KB, Jones LE, Ellner SP (2010) How microbial community composition regulates coral disease development. PLoS Biol 8(3):e1000345. doi:10.1371/journal.pbio.1000345

    PubMed  Article  Google Scholar 

  8. 8.

    Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Progr Ser 243:1–10

    Article  Google Scholar 

  9. 9.

    Johnston IS, Rohwer F (2007) Microbial landscapes on the outer tissue surfaces of the reef-building coral Porites compressa. Coral Reefs 26:375–383

    Article  Google Scholar 

  10. 10.

    Reis AMM, Araújo SD Jr, Moura RL et al (2009) Bacterial diversity associated with the Brazilian endemic reef coral Mussismilia braziliensis. J Appl Microbiol. doi:10.1111/j.1365-2672.2008.04106.x

  11. 11.

    Rodrígues-Ramírez A, Bastidas C, Rodríguez S et al (2008) The effects of coral bleaching in Southern Tropical America: Brazil, Colombia, and Venezuela. In: Wilkinson C, Souter D (eds) Status of Caribbean coral reefs after bleaching and hurricanes in 2005. Global Coral Reef Monitoring Network, and Reef and Rainforest Research Centre, Townsville, pp 105–114

    Google Scholar 

  12. 12.

    Oigman-Pszcsol SS, Creed JC (2004) Size structure and spatial distribution of the corals Mussismilia hispida and Siderastrea stellata (Scleractinea) at Armação dos Buzios, Brazil. Bull Mar Sci 74:433–448

    Google Scholar 

  13. 13.

    Laborel J (1970) Madréporaires et hydrocoralliaires récifaux des cotes brésiliennes. Systématique, écologie, répartition verticale et géographique. XXXVI Campagne de la Calypso au large des cotes Atlantiques de l’Amérique du Sud (1961–1962). Première et deuxième partie (suite):171–229

  14. 14.

    Goreau TJ, Hayes R, Strong A (1997) Caribbean sea surface temperatures and coral bleaching 1989–1996. Global Coral Reef AllianceTM. http://www.globalcoral.org/caribbean_sea_surface_temperatur.htm

  15. 15.

    Lins-de-Barros MM, Vieira RP, Cardoso AM et al (2010) Archaea, bacteria, and algal plastids associated with the reef-building corals Siderastrea stellata and Mussismilia hispida from Búzios, South Atlantic Ocean, Brazil. Microb Ecol 59:523–532

    PubMed  Article  CAS  Google Scholar 

  16. 16.

    Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    PubMed  CAS  Google Scholar 

  17. 17.

    Lane DJ, Pace B, Olsen GJ et al (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959

    PubMed  Article  CAS  Google Scholar 

  18. 18.

    De Long EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  Google Scholar 

  19. 19.

    Oliveira MC, Bhattacharya D (2000) Phylogeny of the Bangiophycidae (Rhodophyta) and the secondary endosymbiotic origin of algal plastids. Am J Bot 87:482–492

    PubMed  Article  CAS  Google Scholar 

  20. 20.

    Yoon HS, Hackett JD, Pinto G, Bhattacharya D (2002) The single, ancient origin of chromist plastids. Proc Natl Acad Sci USA 99:15507–15512

    PubMed  Article  CAS  Google Scholar 

  21. 21.

    Folmer O, Black M, Hoeh W et al (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    PubMed  CAS  Google Scholar 

  22. 22.

    Edwing B, Hillier L, Wendl M, Green P (1998) Base-calling of automated sequencer traces using Phred accuracy assessment. Gen Res 8:175–185

    Google Scholar 

  23. 23.

    Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing MOTHUR: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Thompson JD, Gibson TJ, Plewniak F et al (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  25. 25.

    Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    PubMed  Article  CAS  Google Scholar 

  26. 26.

    Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Schloss PD, Larget BR, Handelsman J (2004) Integration of microbial ecology and statistics: a test to compare gene libraries. Appl Environ Microbiol 70:5485–5492

    PubMed  Article  CAS  Google Scholar 

  29. 29.

    Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235

    PubMed  Article  CAS  Google Scholar 

  30. 30.

    Lozupone C, Lladser ME, Knights D et al (2011) UniFrac: an effective distance metric for microbial community comparison. ISME J 5:169–172

    PubMed  Article  Google Scholar 

  31. 31.

    Castro CB, Pires DO (2001) Brazilian coral reefs: what we already know and what is still missing. Bull Mar Sc 69:357–371

    Google Scholar 

  32. 32.

    Leão ZMAN, Kikuchi RKP, Oliveira MDM, Vasconcellos V (2010) Status of Eastern Brazilian coral reefs in time of climate changes. Pan-American J Aquat Sc 5:224–235

    Google Scholar 

  33. 33.

    Siboni N, Ben-Dov E, Sivan A, Kushmaro A (2008) Global distribution and diversity of coral-associated Archaea and their possible role in the coral holobiont nitrogen cycle. Environ Microbiol 10:2979–2990

    PubMed  Article  CAS  Google Scholar 

  34. 34.

    Bourne DG, Munn CB (2005) Diversity of bacteria associated with the coral Pocillopora damicornis from the Great Barrier Reef. Environ Microbiol 7:1162–1174

    PubMed  Article  CAS  Google Scholar 

  35. 35.

    Casas V, Kline DI, Wegley L et al (2004) Widespread association of a Rickettsiales-like bacterium with reef-building corals. Environ Microbiol 6:1137–1148

    PubMed  Article  Google Scholar 

  36. 36.

    Pantos O, Cooney RP, Le Tissier MDA et al (2003) The bacterial ecology of a plague-like disease affecting the Caribbean coral Montastrea annularis. Environ Microbiol 5:370–382

    PubMed  Article  CAS  Google Scholar 

  37. 37.

    Thurber RV, Willner-Hall D, Rodriguez-Mueller B et al (2009) Metagenomic analysis of stressed coral holobionts. Env Microbiol 11:2148–2163

    Article  CAS  Google Scholar 

  38. 38.

    Koren O, Rosenberg E (2006) Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl Environ Microbiol 72:5254–5259

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Könneke M, Bernhard AE, de la Torre JR et al (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546

    PubMed  Article  Google Scholar 

  40. 40.

    Preston CM, Wu KY, Molinski TF, DeLong EF (1996) A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc Natl Acad Sci USA 93:6241–6246

    PubMed  Article  CAS  Google Scholar 

  41. 41.

    Beman JM, Roberts KJ, Wegley L, Rohwer F, Francis CA (2007) Distribution and diversity of archaeal ammonia monooxygenase genes associated with corals. AEM 73:5642–5647

    CAS  Google Scholar 

  42. 42.

    Wegley L, Yu Y, Breitbart M et al (2004) Coral-associated Archaea. Mar Ecol Prog Ser 273:89–96

    Article  CAS  Google Scholar 

  43. 43.

    Kellogg CA (2004) Tropical Archaea: diversity associated with the surface microlayer of corals. Mar Ecol Prog Ser 273:81–88

    Article  CAS  Google Scholar 

  44. 44.

    Rohwer F, Breitbart M, Jara J et al (2001) Diversity of bacteria associated with the Caribbean coral Monstastrea franksi. Coral Reefs 20:85–91

    Article  Google Scholar 

  45. 45.

    Castro AP, Araújo SD, Reis AMM et al (2010) Bacterial community associated with healthy and diseased reef coral Mussismilia hispida from Eastern Brazil. Microb Ecol 59:658–667

    PubMed  Article  Google Scholar 

  46. 46.

    Ainsworth TD, Fine M, Roff G, Hoegh-Guldberg O (2008) Bacteria are not the primary cause of bleaching in the Mediterranean coral Oculina patagonica. ISME J 2:67–73

    PubMed  Article  CAS  Google Scholar 

  47. 47.

    Fine M, Loya Y (2002) Endolithic algae: an alternative source of energy during coral bleaching. Proc R Soc B 269:1205–1210

    PubMed  Article  Google Scholar 

  48. 48.

    Ralph PJ, Larkum AWD, Kühl M (2007) Photobiology of endolithic microorganisms in living coral skeletons: 1. Pigmentation, spectral reflectance and variable chlorophyll fluorescence analysis of endoliths in the massive corals Cyphastrea serailia, Porites lutea and Goniastrea australensis. Mar Biol 152:395–404

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Genome Sequencing facilities core Johanna Döbereiner IBqM/UFRJ. We are grateful to Aline S. Turque, Vivian Monteiro, and Denise N. Oliveira for library construction and sequencing. Special thanks to Leonardo H. Pinto for technical assistance. We also would like to thank the magazine referees which highly improved the quality of the information present within this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Monica M. Lins-de-Barros.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Table S1

Clone library richness, abundance, and diversity parameters (DOC 57 kb)

Table S2

Results of the LIBSHUFF analysis (DOC 26 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lins-de-Barros, M.M., Cardoso, A.M., Silveira, C.B. et al. Microbial Community Compositional Shifts in Bleached Colonies of the Brazilian Reef-Building Coral Siderastrea stellata . Microb Ecol 65, 205–213 (2013). https://doi.org/10.1007/s00248-012-0095-x

Download citation

Keywords

  • Microbial Community
  • Archaea
  • Archaeal Community
  • Bleached Coral
  • Healthy Coral