Skip to main content

Advertisement

Log in

The Abundance and Diversity of Legume-Nodulating Rhizobia in 28-Year-Old Plantations of Tropical, Subtropical, and Exotic Tree Species: a Case Study from the Forest Reserve of Bandia, Senegal

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Several fast-growing and multipurpose tree species have been widely used in West Africa to both reverse the tendency of land degradation and restore soil productivity. Although beneficial effects have been reported on soil stabilization, there still remains a lack of information about their impact on soil microorganisms. Our investigation has been carried out in exotic and native tree plantations of 28 years and aimed to survey and compare the abundance and genetic diversity of natural legume-nodulating rhizobia (LNR). The study of LNR is supported by the phylogenetic analysis which clustered the isolates into three genera: Bradyrhizobium, Mesorhizobium, and Sinorhizobium. The results showed close positive correlations between the sizes of LNR populations estimated both in the dry and rainy seasons and the presence of legume tree hosts. There were significant increases in Rhizobium spp. population densities in response to planting with Acacia spp., and high genetic diversities and richness of genotypes were fittest in these tree plantations. This suggests that enrichment of soil Rhizobium spp. populations is host specific. The results indicated also that species of genera Mesorhizobium and Sinorhizobium were lacking in plantations of non-host species. By contrast, there was a widespread distribution of Bradyrhizobium spp. strains across the tree plantations, with no evident specialization in regard to plantation type. Finally, the study provides information about the LNR communities associated with a range of old tree plantations and some aspects of their relationships to soil factors, which may facilitate the management of man-made forest systems that target ecosystem rehabilitation and preservation of soil biota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Andrade DS, Murphy PJ, Giller KE (2002) The diversity of Phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil. Appl Environ Microbiol 68:4025–4034

    Article  PubMed  CAS  Google Scholar 

  2. Aubert G (1978) Méthodes d’Analyse des Sols. Edition CRDP, Marseille, p 360

    Google Scholar 

  3. Bala A, Murphy P, Giller KE (2003) Distribution and diversity of rhizobia nodulating agroforestry legumes in soils from three continents in the tropics. Mol Ecol 12:917–930

    Article  PubMed  CAS  Google Scholar 

  4. Brockwell J (1980) Experiments with crop and pasture legumes. Principle and practice. In: Bergersen FJ (ed) Methods for evaluating biological nitrogen fixation. Wiley, New York, pp 417–488

    Google Scholar 

  5. Diouf D, Sougoufara B, Neyra M, Lesueur D (2002) Le reboisement au Sénégal: bilan des réalisations de 1993 à 1998. Rev For Fr LIV 3:227–238

    Google Scholar 

  6. Diouf D, Samba-Mbaye RT, Lesueur D, BA AT, Dreyfus B, de Lajudie P, Neyra M (2007) Genetic diversity of Acacia seyal rhizobial population indigenous to Senegalese soils in relation to salinity and pH of the sampling sites. Microb Ecol 54:553–566

    Article  PubMed  CAS  Google Scholar 

  7. Doignon-Bourcier F, Willems A, Coopman R, Laguerre G, Gillis M, de Lajudie P (2000) Genotypic characterization of Bradyrhizobium strains nodulating small Senegalese legumes by 16S-23S rRNA intergenic gene spacers and amplified fragment length polymorphism fingerprint analyses. Appl Environ Microbiol 66:3987–3997

    Article  PubMed  CAS  Google Scholar 

  8. Dommergues, Y, Duhaux, E, Hoang, GD (1999) Les Arbres Fixateurs d’Azote: Caractéristiques fondamentales et rôle dans l’aménagement des écosystèmes méditerranéens et tropicaux. Y. Dommergues (ed). Édition espaces 34. Paris, 475p

  9. Donfack P, Floret C, Pontanier R (1995) Secondary succession in abandoned fields of dry tropical northern Cameroon. J Veg Sci 6:499–508

    Article  Google Scholar 

  10. Dreyfus B, Diem HG, Freire J, Keya SO, Dommergues YR (1988) Nitrogen fixation in tropical agriculture and forestry. In: Dasilva EJ, Dommergues YR, Nyns EJ, Ratledge C (eds) Microbial technology in the developing world. Oxford University Press, Oxford, pp 1–7

    Google Scholar 

  11. Faye A, Krasova-Wade T, Thiao M, Thioulouse J, Neyra M, Prin Y, Galiana A, Ndoye I, Dreyfus B, Duponnois R (2009) Controlled ectomycorrhization of an exotic legume tree species Acacia holosericea affects the structure of root nodule bacteria community and their symbiotic effectiveness on Faiderbia albida, a native Sahelian Acacia. Soil Biol Biochem 41:1245–1252

    Article  CAS  Google Scholar 

  12. Forrester DI, Bauhus J, Cowie AL, Vanclay JK (2006) Mixed-species plantations of Eucalyptus with nitrogen fixing trees: a review. For Ecol Manag 233:211–230

    Article  Google Scholar 

  13. Fortin JA, Plenchette C, Piché Y (2008) Les Mycorhizes: la Nouvelle Révolution Verte. Édition multimondes, Québec Canada, 138p

    Google Scholar 

  14. Garau G, Yates RJ, Deiana P, Howieson JG (2009) Novel strains of nodulating Burkholderia have a role in nitrogen fixation with papilionoid herbaceous legumes adapted to acid, infertile soils. Soil Biol Biochem 41:125–134

    Article  CAS  Google Scholar 

  15. Giller, KE (2001) Nitrogen fixation in tropical cropping systems, 2nd edn, pp. 37, 222–250. Wallingford: CABI

  16. Gueye F, Moulin L, Sylla S, Ndoye I, Béna G (2009) Genetic diversity and distribution of Bradyrhizobium and Azorhizobium strains associated with the herb legume Zornia glochidiata sampled from across Senegal. Syst Appl Microbiol 32:387–399

    Article  PubMed  CAS  Google Scholar 

  17. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  18. Ingleby K, Diagne O, Deans JD, Lindley DK, Neyra M, Ducousso M (1997) Distribution of roots, arbuscular mycorrhizal colonisation and spores around fast-growing tree species in Senegal. For Ecol Manag 90:19–27

    Article  Google Scholar 

  19. Islam MS, Kawasaki H, Muramatsu Y, Nakagawa Y, Seki T (2008) Bradyrhizobium iriomotense sp. nov., isolated from a tumor-like root of the legume Entada koshunensis from Iriomote Island in Japan. Biosci Biotechnol Biochem 72:1416–1429

    Article  PubMed  CAS  Google Scholar 

  20. Johnson D, Vandenkoornhuyse PJ, Leake JR, Gilbert L, Booth RE, Grime JP, Young JPW (2004) Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol 161:503–515

    Article  Google Scholar 

  21. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Google Scholar 

  22. Kahindi JHP, Woomer P, George T, de Souza Moreira FM, Karanja NK, Giller KE (1997) Agricultural intensification, soil biodiversity and ecosystem function in the tropics: the role of nitrogen-fixing bacteria. Appl Soil Ecol 6:55–76

    Article  Google Scholar 

  23. Kiers ET, Rousseau RA, West SA, Denison RF (2003) Host sanctions and the legume–Rhizobium mutualism. Nature (Lond) 425:78–81

    Article  CAS  Google Scholar 

  24. Kisa A, Sanon A, Thioulouse J, Assigbetse K, Sylla S, Spichiger R, Dieng L, Berthelin J, Prin Y, Galiana A, Lepage M, Duponnois R (2007) Arbuscular mycorrhizal symbiosis can counterbalance the negative influence of the exotic tree species Eucalyptus camaldulensis on the structure and functioning of soil microbial communities in a Sahelian soil. FEMS Microbiol Ecol 62:32–44

    Article  PubMed  CAS  Google Scholar 

  25. Krasova-Wade T, Ndoye I, Braconnier S, Sarr B, de Lajudie P, Neyra M (2003) Diversity of bradyrhizobia associated with three cowpea cultivars (Vigna unguiculata (L.) Walp.) grown under limited and favorable water conditions in Senegal (West Africa). Afr J Biotechnol 2:13–22

    CAS  Google Scholar 

  26. Laguerre G, Allard M-R, Revoy F, Aarger N (1994) Rapid identification of rhizobia by restriction fragment length polymorphism analysis of PCR-amplified 16 S rRNA genes. Appl Environ Microbiol 60:56–63

    PubMed  CAS  Google Scholar 

  27. Lawson K, Barnet YM, McGilchrist CA (1987) Environmental factors influencing numbers of Rhizobium leguminosarum bv. trifolii and its bacteriophages in two field soils. Appl Environ Microbiol 53:1125–1131

    PubMed  CAS  Google Scholar 

  28. Mungai NW, Motavalli PP, Kremer RJ, Nelson KA (2005) Spatial variation of soil enzyme activities and microbial functional diversity in temperate alley cropping systems. Biol Fertil Soils 42:129–136

    Article  Google Scholar 

  29. Muya EM, Karanja N, Okoth PFZ, Roimen H, Mungatu J, Mutsotso B, Thuranira G (2009) Comparative description of land use and characteristics of belowground biodiversity benchmark sites in Kenya. Trop Subtrop Agroecosystems 11:263–275

    Google Scholar 

  30. Mwenda GM, Kranja NK, Boga H, Kahindi JHP, Muigai A, Odee D (2011) Abundance and diversity of legume-nodulating rhizobia in soils of Embu district, Kenya. J Trop Subtrop Agroecosystems 13:1–10

    Google Scholar 

  31. Navarro E, Simonet P, Normand P, Bardin R (1992) Characterization of natural population of Nitrobacter spp. using PCR/RFLP analysis of ribosomal intergenic spacer. Arch Microbiol 157:107–115

    PubMed  CAS  Google Scholar 

  32. Norris DO (1965) Acid production by Rhizobium: a unifying concept. Plant Soil 22:143–166

    Article  Google Scholar 

  33. Odee DW, Haukka K, McInroy SG, Sprent JI, Sutherland JM, Young JPW (2002) Genetic and symbiotic characterization of rhizobia isolated from tree and herbaceous legumes grown in soils from ecologically diverse sites in Kenya. Soil Biol Biochem 34:801–811

    Article  CAS  Google Scholar 

  34. Olsen, SR, Cole, CV, Watanabe, FS, Dean, LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate, p. 19. U.S. Department of Agriculture circular, vol. 939. U.S. Department of Agriculture, Washington, DC

  35. Parrotta JA, Turnbull JW, Jones N (1997) Catalyzing native forest regeneration on degraded tropical lands. For Ecol Manag 99:1–7

    Article  Google Scholar 

  36. Ponsonnet C, Nesme X (1994) Identification of Agrobacterium strains by PCR-RFLP analysis of pTi and chromosomal regions. Arch Microbiol 161:300–309

    PubMed  CAS  Google Scholar 

  37. Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  PubMed  CAS  Google Scholar 

  38. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  39. Sarr A, Neyra M, Ould-Houeibib MA, Ndoye I, Oihabi A, Lesueur D (2005) Characterization of native rhizobial populations present in soils from natural forests of Acacia senegal and Acacia nilotica in Trarza and Gorgol regions from Mauritania and the Senegal River Valley. Microb Ecol 50:152–162

    Article  PubMed  Google Scholar 

  40. Sene G, Thiao M, Samba-Mbaye R, Ndoye F, Kane A, Diouf D, Sylla SN (2010) Response of three peanut cultivars toward inoculation with two Bradyrhizobium strains and an arbuscular mycorrhizal fungus in Senegal. Afr J Microbiol Res 4(23):2520–2527

    CAS  Google Scholar 

  41. Sene G, Thiao M, Manga A, Kane A, Samba-Mbaye R, Mbaye MS, Khasa D, Sylla SN (2012) Arbuscular mycorrhizal soil infectivity and spores distribution across plantations of tropical, subtropical and exotic tree species: a case study from the forest reserve of Bandia, Senegal. Afr J Ecol 50:218–232

    Article  Google Scholar 

  42. Sene G, Samba-Mbaye R, Thiao M, Khasa D, Kane A, Manga A, Mbaye MS, Sylla SN (2012) The abundance and diversity of legume-nodulating rhizobia and arbuscular mycorrhizal fungal communities in soil samples from deforested and man-made forest systems in a semiarid Sahel region in Senegal. Europ J Soil Biol 52:30–40, http://dx.doi.org/10.1016/j.ejsobi.2012.05.005

    Article  Google Scholar 

  43. Silva AMM, Silva AR, Pinheiro AM, Freitas SRVB, Silva VDA, Souza CS, Hughes JB, El-Bacha RS, Costa MFD, Velozo ES, Tardy M, Costa SL (2007) Alkaloids from Prosopis juliflora leaves induce glial activation, cytotoxicity and stimulate NO production. Toxicon 49:601–614

    Article  PubMed  CAS  Google Scholar 

  44. Stinson KA, Campbell SA, Powell JR, Wolfe BE, Callaway RM, Thelen GC, Hallett SG, Prati D, Klironomos JN (2006) Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol 4:727–731

    Article  CAS  Google Scholar 

  45. Sylla SN, Samba RT, Neyra M, Ndoye I, Giraud E, Willems A, de Lajudie P, Dreyfus B (2002) Phenotypic and genotypic diversity of rhizobia nodulating Pterocarpus erinaceus and P. lucens in Senegal. Syst Appl Microbiol 25:572–583

    Article  PubMed  CAS  Google Scholar 

  46. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  47. Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  48. van der Heijden M, Bakker R, Verwaal J, Scheublin TR, Rutten M, van Logtestijn R, Staehelin C (2006) Symbiotic bacteria as a determinant of plant community structure and plant productivity in dune grassland. FEMS Microbiol Ecol 56:178–187

    Article  PubMed  Google Scholar 

  49. van der Heijden MGA, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Letters 11:296–310

    Article  Google Scholar 

  50. Velázquez E, Igual JM, Willems A, Fernández MP, Muñoz E, Mateos PF, Abril A, Toro N, Normand P, Cervantes E, Gillis M, Martínez-Molina E (2001) Mesorhizobium chacoense sp. nov., a novel species that nodulates Prosopis alba in the Chaco Arido region (Argentina). Int J Syst Evolution Microbiol 51:1011–1021

    Article  Google Scholar 

  51. Vincent JM (1970) A manual for the practical study of root-nodule bacteria. IBP Handbook N° 15. Blackwell, Oxford, p 164

    Google Scholar 

  52. Wolde-Meskel E, Terefework Z, Frostegård Å, Lindström K (2005) Genetic diversity and phylogeny of rhizobia isolated from agroforestry legume species in southern Ethiopia. Int J Syst Evol Microbiol 55:1439–1452

    Article  PubMed  CAS  Google Scholar 

  53. Woomer P, Singleton PW, Bohlool BB (1988) Ecological indicators of native rhizobia in tropical soils. Appl Environ Microbial 54:1112–1116

    CAS  Google Scholar 

  54. Xingjun Y, Dan Y, Zhijun L, Keping MA (2005) A new mechanism of invader success: exotic plant inhibits natural vegetation restoration by changing soil microbe community. Chinese Sc Bulletin 50:1105–1112

    Article  Google Scholar 

  55. Yates RJ, Howieson JG, Nandasena KG, O’Hara GW (2004) Root-nodule bacteria from indigenous legumes in the north-west of Western Australia and their interaction with exotic legumes. Soil Biol Biochem 36:1319–1329

    Article  CAS  Google Scholar 

  56. Zhang Y, Gui LD, Liu RJ (2004) Survey of arbuscular mycorrhizal fungi in deforested and natural forest land in the subtropical region of Dujiangyan, southwest China. Plant Soil 261:257–263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Fonds National de Recherche Agricole et Agroalimentaire (02AP06SS020407), Sud Expert Plantes (306 F), and the Agence Universitaire de la Francophonie. We are grateful to Pr Mamadou Gueye (ANSTS) and Pr Cheikh Kandji (UCAD) for correcting the English grammar in the original text, and the anonymous reviewers for invaluable comments on the manuscript. G. Sene received grant from the Institut Senegalais de Recherches Agricoles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Godar Sene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sene, G., Thiao, M., Samba-Mbaye, R. et al. The Abundance and Diversity of Legume-Nodulating Rhizobia in 28-Year-Old Plantations of Tropical, Subtropical, and Exotic Tree Species: a Case Study from the Forest Reserve of Bandia, Senegal. Microb Ecol 65, 128–144 (2013). https://doi.org/10.1007/s00248-012-0094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0094-y

Keywords

Navigation