Skip to main content
Log in

Epidemic Mortality of the Sponge Ircinia variabilis (Schmidt, 1862) Associated to Proliferation of a Vibrio Bacterium

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

In recent years, several episodes of mass mortality of sessile epibenthic invertebrates, including sponges, have been recorded worldwide. In the present study, we report a disease event on Ircinia variabilis recorded in September 2009 along the southern Adriatic and Ionian seas (Apulian coast), with the aim to quantify the mortality incidence on the sponge population, to investigate the effect of the disease on the sponge tissues and to assess whether the disease is associated with vibrios proliferation. The injured sponges showed wide necrotic areas on the surface or disruption of the body in several portions. Necrotic areas were whitish and often were covered with a thin mucous coat formed by bacteria. In the most affected specimens, sponge organisation resulted partial or complete loss, with the final exposure of the dense skeletal network of spongine fibres to the environment. The results of microbiological cultural analysis using in parallel Marine Agar 2216 and thiosulphate/citrate/bile salts/sucrose agar demonstrated that, in affected specimens, vibrios represented 15.8 % of the total I. variabilis surface culturable bacteria. Moreover, all the isolated vibrios, grown from the wide whitish areas that characterize the surface of the diseased sponges, were identified, and their assignment to the Vibrio rotiferianus was consistent with phylogenetic analysis and data of morphological, cultural and biochemical tests. Studies on V. rotiferianus have shown that its pathogenicity, with respect to various aquatic organisms, is higher than that of Vibrio harveyi. The factors triggering the disease outbreak in Ircinia variabilis populations remain unclear. At present, we can hypothesize the involvement in the disease of a synergetic mechanism that, under stressful physiological conditions (high temperature, elevated nutrients and reduced water flow), induces sponge pathogens, in our case V. rotiferanius, to become virulent, making sponges unable to control their proliferation. Additional studies are needed to understand the etiological processes as well as the factors involved in sponges recovering from this epidemic event allowing them to face mass mortality. A drastic reduction of sponge-specific representatives could have marked a negative impact on the environmental health on account of their role in the sea remediation processes as filter-feeding organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Alcaide E, Gil Sanz C, Esteve D, Sanjuan D, Amaro C, Silveira L (2001) Vibrio harveyi desease in seahorse, Hippocampus sp. J Fish Dis 2:311–313

    Article  Google Scholar 

  2. Alsina M, Blanch AR (1994) A set of keys for biochemical identification of environmental Vibrio species. J Appl Bacteriol 76:79–85

    Article  PubMed  CAS  Google Scholar 

  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  4. Bally M, Garrabou J (2007) Thermodependent bacterial pathogens and mass mortalities in temperate benthic communities: a new case of emerging disease linked to climate change. Glob Change Biol 13:2078–2088

    Article  Google Scholar 

  5. Baumann PS, Schubert RHW (1984) The family II Vibrionaceae Veron. In: Krieg NR (ed) Bergey’s Manual of Systematic Bacteriology. Williams and Williams, Baltimore, pp 515–538

    Google Scholar 

  6. Belas R, Simon M, Silverman M (1986) Regulation of lateral flagella gene transcription in Vibrio parahaemolyticus. J Bacteriol 167:210–218

    PubMed  CAS  Google Scholar 

  7. Ben-Haim Y, Thompson FL, Thompson CC, Cnockaert MC, Hoste B, Swings J, Rosenberg E (2003) Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillipora damicornis. Int J Syst Evol Microbiol 53:309–315

    Article  PubMed  CAS  Google Scholar 

  8. Boucher Y, Nesbo CL, Joss MJ, Robinson A, Mabbutt BC, Gillings MR, Doolittle WF, Stokes HW (2006) Recovery and evolutionary analysis of complete integron gene cassette arrays from Vibrio. BMC Evol Biol 6:3

    Article  PubMed  Google Scholar 

  9. Boucher Y, Labbate M, Koenig JE, Stokes HW (2007) Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol 15:301–309

    Article  PubMed  CAS  Google Scholar 

  10. Brock JA, Lightner DV (1990) Diseases of crustacea. In: Kinne O (ed) Diseases of Marine Animals. Biologische Anstalt Helgoland, Hamburg, pp 245–424

    Google Scholar 

  11. Brown JK (1994) Bootstrap hypothesis tests for evolutionary trees and other dendrograms. Proc Natl Acad Sci USA 91:12293–12297

    Article  PubMed  CAS  Google Scholar 

  12. Cebrian E, Uriz MJ, Garrabou J, Ballesteros E (2011) Sponge mass mortalities in a warming Mediterranean sea: are cyanobacteria-harboring species worse off? PLoS One 6(6):e20211. doi:10.1371/journal.pone.0020211

    Article  PubMed  CAS  Google Scholar 

  13. Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-Western Mediterranean), summer 1999. Ecol Lett 3:284–293

    Article  Google Scholar 

  14. Cerrano C, Magnino G, Sarà A, Bavestrello G, Gaino E (2001) Necrosis in a population of Petrosia ficiformis (Porifera, Demospongiae) in relation with environmental stress. Ital J Zool 68:131–136

    Article  Google Scholar 

  15. Cervino JM, Hayes R, Polson S, Polson SC, Goreau TJ, Martinez RJ, Smith GW (2004) Relationship of Vibrio species infection and elevated temperatures to yellow blotch ⁄ band disease in Caribbean corals. Appl Environ Microbiol 70:6855–6864

    Article  PubMed  CAS  Google Scholar 

  16. Cervino JM, Thompson FL, Gomez-Gil B, Lorence EA, Goreau TJ, Hayes RL, Winiarski-Cervino KB, Smith GW, Hughen K, Bartels E (2008) The Vibrio core group induces yellow band disease in Caribbean and Indo-Pacific reef-building corals. J Appl Microbiol 105(5):1658–1671

    Article  PubMed  CAS  Google Scholar 

  17. Coma R, Ribes M, Gili JM, Zabala M (2002) Seasonality of in situ respiration rate in three temperate benthic suspension feeders. Limnol Oceanogr 47:324–331

    Article  Google Scholar 

  18. Coma R, Ribes M (2003) Seasonal energetic constraints in Mediterranean benthic suspension feeders: effects at different levels of ecological organization. Oikos 101:205–215

    Article  Google Scholar 

  19. Coma R, Ribes M, Serrano E, Jimenez E, Salat J, Pascual J (2009) Global warming-enhanced stratification and mass mortality events in the Mediterranean. Proc Natl Acad Sci USA 106:6176–6181

    Article  PubMed  CAS  Google Scholar 

  20. Corriero G, Scalera Liaci L, Rizzello R (1996) Osservazioni sulla mortalità di Ircinia spinosula (Schmidt) ed Ircinia sp. (Porifera, Demospongiae) nell'insenatura della Strea di Porto Cesareo. Thalass Salentina 22:51–62

    Google Scholar 

  21. Cossins AR, Bowler K (1987) Temperature Biology of Animals. Chapman and Hall. London, London

    Book  Google Scholar 

  22. Diaz MC, Rutzler K (2001) Sponges an essential component of Caribbean coral reefs. Bull Mar Sci 69(2):535–546

    Google Scholar 

  23. Farmer JJ III, Janda JM, Brenner FW, Cameron DN, Birkhead KM (2005) Genus 1. Vibrio Pacini 1854, 411AL. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey's Manual of Systematic Bacteriology the Proteobacteria Part B the Gammaproteobacteria vol. 2, 2nd edn. Springer, New York

    Google Scholar 

  24. Ferrier-Pages C, Tambutte’ E, Zamoum T, Segonds N, Merle PL et al (2009) Physiological response of the symbiotic gorgonian Eunicella singularis to a longterm temperature increase. J Exp Biol 212:3007–3015

    Article  PubMed  Google Scholar 

  25. Gaino E, Pronzato R (1987) Ultrastructural observations of the reaction of Chondrilla nucula (Porifera, Demospongiae) to bacterial invasion during degenerative processes. Cah Biol Mar 28:37–46

    Google Scholar 

  26. Gaino E, Pronzato R (1989) Ultrastructural evidence of bacterial damage to Spongia officinalis fibres (Porifera, Demospongiae). Dis Aquat Organ 6:67–74

    Article  Google Scholar 

  27. Gaino E, Pronzato R (1992) Epidemie e pesca intensiva minacciano la sopravvivenza delle spugne commerciali del bacino del Mediterraneo. Boll Mus 1st Biol Univ Genova 56-57:209–224

    Google Scholar 

  28. Gaino E, Pronzato R, Corriero G, Buffa P (1992) Mortality of commercial sponges: incidence in two Mediterranean areas. B Zool 59:79–85

    Article  Google Scholar 

  29. Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: Two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12:543–548

    PubMed  CAS  Google Scholar 

  30. Garrabou J, Coma R, Bensoussan N, Bally M, Chevaldonné P, Cigliano M, Diaz JG, Harmelin JG, Gambi MC, Kersting DK et al (2009) Mass mortality in NW Mediterranean rocky benthic communities: effects of the 2003 heat wave. Glob Chang Biol 15:1090–1103

    Article  Google Scholar 

  31. Garrity G, Brenner DJ, Krieg NR, Staley JR (2005) Bergey's Manual of Systematic Bacteriology, 2nd edn. Williams and Wilkins, Baltimore

    Google Scholar 

  32. Gherardi M, Giangrande A, Corriero G (2001) Epibiontic and endobiontic polychaetes of Geodia cydonium (Porifera, Demospongiae) from the Mediterranean Sea. Hydrobiologia 443:87–101

    Article  Google Scholar 

  33. Gochfeld DJ, Schloeder C, Thacker RW (2007) Sponge community structure and disease prevalence on coral reefs in Bocas del Toro, Panama. In: Custo’dio M, Loˆbo-Hajdu G, Hajdu E, Muricy G (eds) Museu Nacional serie livros Museu Nacional-Univ Federal Do Rio De Janeiro. Rio de Janeiro, Brazil, pp 335–343

    Google Scholar 

  34. Gomez-Gil B, Thompson FL, Thompson CC, Swings J (2003) Vibrio rotiferianus sp. nov., isolated from cultures of the rotifer Brachionus plicatilis. Int J Syst Evol Microbiol 53:239–243

    Article  PubMed  CAS  Google Scholar 

  35. Harmelin JG, Marinopoulos J (1994) Population structure and partial mortality of the gorgonian Paramuricea clavata in the north-western Mediterranean. Mar Life 4:5–13

    Google Scholar 

  36. Henke JM, Bassler BL (2004) Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J Bacteriol 186:3794–3805

    Article  PubMed  CAS  Google Scholar 

  37. Hooper JNA, van Soest RWM (2002) Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum Publ, New York

    Google Scholar 

  38. Hummel H, Sepers ABJ, de Wolf L, Melissen FW (1988) Bacterial growth on the marine sponge Halichondria panicea induced by reduced waterflow rate. Mar Ecol-Prog Ser 42:195–198

    Article  Google Scholar 

  39. Jawahar AT, Keleemur RM, Leema JMT (1996) Bacterial disease in cultured spiny lobster, Panulirus homarus (Linnaeus). J Aquac Trop 11:187–192

    Google Scholar 

  40. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  PubMed  CAS  Google Scholar 

  41. Lauckner, G.: Diseases of Porifera. In: Kinne O (ed.) Diseases of marine animals, vol. I, pp. 139–165. John Wiley and Sons, NewYork (1980) 66(2)

  42. Lavilla-Pitogo CR, Leano EM, Paner MG (1990) Occurrence of luminous bacterial disease of Penaeus monodon larvae in the Philippines. Aquaculture 91:1–13

    Article  Google Scholar 

  43. Lavilla-Pitogo CR, Leano EM, Paner MG (1998) Mortalities of pond-cultured juvenile shrimp, Penaeus monodon, associated with dominance of luminescent vibrios in the rearing environment. Aquaculture 164:337–349

    Article  Google Scholar 

  44. Lee KK, Liu PC, Kou GH, Chen SN (1997) Investigation on the major exotoxin of Vibrio harveyi 770527 isolated from diseased Penaeus monodon. Rep Fish Dis Res 18:33–42

    Google Scholar 

  45. Lewis DH (1973) Response of brown shrimp to infection with Vibrio sp. Proc Wld Maricult Soc 4:333–338

    Google Scholar 

  46. Lightner DV, Lewis DH (1975) A septicemic bacterial disease syndrome of penaeid shrimp. Mar Fish Rev 37(5–6):25–28

    Google Scholar 

  47. Liu PC, Lee KK, Tu CC, Chen SN (1997) Purification and characterization of a cysteine protease produced by pathogenic luminous Vibrio harveyi. Curr Microbiol 35:32–39

    Article  PubMed  CAS  Google Scholar 

  48. Liu PC, Lee KK (1999) Cysteine protease is a major exotoxin of pathogenic luminous Vibrio harveyi in the tiger prawn, Penaeus monodon. Lett Appl Microbiol 28:428–430

    Article  PubMed  CAS  Google Scholar 

  49. Luter HM, Whalan S, Webster NS (2010) Exploring the role of microorganisms in the disease-like syndrome affecting the sponge Ianthella basta. Appl Environ Microb 76(17):5736–5744

    Article  CAS  Google Scholar 

  50. Luter HM, Whalan S, Webster NS (2010) Prevalence of tissue necrosis and brown spot lesions in a common marine sponge. Mar Freshw Res 61:484–489

    Article  Google Scholar 

  51. Maldonado M, Sànchez-Tocino L, Navarro C (2010) Recurrent disease outbreaks in corneous demosponges of the genus Ircinia: epidemic incidence and defence mechanisms. Mar Biol 157:1577–1590

    Article  Google Scholar 

  52. McCarter L (1999) The Multiple Identities of Vibrio parahaemolyticus. J Molec Microbiol Biotechnol 1(1):51–57

    CAS  Google Scholar 

  53. Mistri M, Ceccherelli VU (1996) Effects of a mucilage event on the Mediterranean gorgonian Paramuricea clavata. I–Short term impacts at the population and colony levels. Ital J Zool 63:221–230

    Article  Google Scholar 

  54. Montero AB, Austin B (1999) Characterization of extracellular products from an isolate of Vibrio harveyi recovered from diseased post-larval Penaeus vannamei (Bonne). J Fish Dis 22:377–386

    Article  CAS  Google Scholar 

  55. Nakayama T, Nomura N, Matsumura M (2006) Study on the relationship of protease production and luminescence in Vibrio harveyi. J Appl Microbiol 101:200–205

    Article  PubMed  CAS  Google Scholar 

  56. Pass DA, Dybdahl R, Mannion MM (1987) Investigation into the causes of mortality of the pearl oyster, Pinctada maxima (Jamson), in Western Australia. Aquaculture 65:149–169

    Article  Google Scholar 

  57. Prasad S, Morris PC, Hansen R, Meaden PG, Austin B (2005) A novel bacteriocin-like substance (BLIS) from a pathogenic strain of Vibrio harveyi. J Microbiol 151:3051–3058

    Article  CAS  Google Scholar 

  58. Pronzato R, Rizzello R, Dessy E, Corriero G, Scalera Liaci L (1996) Distribuzione e pesca di Spongia officinalis (L.) (Porifera, Demospongiae) lungo il litorale ionico pugliese. Boll Mus Ist Biol Univ Genova 60–61:79–89

    Google Scholar 

  59. Rivoire G (1991) Mortalité du corail et des gorgones en profondeur au large des côtes provençales. In: Boudouresque CF, Avon M, Gravez V (eds) Les Espèces Marines à Protéger en Méditérranée. GIS Posidonie, Marseille, pp 53–59

    Google Scholar 

  60. Roy Chowdhury P, Boucher Y, Hassan KA, Paulsen IT, Stokes HW, Labbate M (2011) Genome Sequence of Vibrio rotiferianus Strain DAT722. J Bacteriol 193(13):3381–3382

    Article  PubMed  Google Scholar 

  61. Rypien KL, Ward JR, Azam F (2010) Antagonistic interactions among coral-associated bacteria. Environ Microbiol 12:28–39

    Article  PubMed  CAS  Google Scholar 

  62. Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  63. Sambrook J, Russel DW (2001) Molecular Cloning in Laboratory. Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  64. Sarà M (1971) Ultrastructural aspects of the symbiosis between the two species of the genus Aphanocapsa (Cyanophyceae) and Ircinia variabilis (Demospongiae). Mar Biol 11:214–221

    Article  Google Scholar 

  65. Sarà M, Vacelet J (1973) Écologie des démosponges. In: Grassé PP (ed) Spongiaires. Anatomie, Physiologie, Systématique, Écologie. Masson de Cie, Paris, pp 462–576

    Google Scholar 

  66. Sizemore RK, Davis JW (1985) Source of Vibrio spp. found in the hemolymph of the blue crab Callinectes sapidus. J Invertebr Pathol 46:109–110

    Article  PubMed  CAS  Google Scholar 

  67. Stabili L, Gravili C, Piraino S, Boero F, Alifano P (2006) Vibrio harveyi associated with Aglophenia octodonta (Hydrozoa, Cnidaria). Microb Ecol 52:603–608

    Article  PubMed  CAS  Google Scholar 

  68. Stabili L, Gravili C, Tredici SM, Piraino S, Talà A, Boero F, Alifano P (2008) Epibiotic vibrio luminous bacteria isolated from some hydrozoa and bryozoa species. Microb Ecol 56(4):625–636

    Article  PubMed  CAS  Google Scholar 

  69. Stabili L, Gravili C, Boero F, Tredici SM, Alifano P (2010) Susceptibility to antibiotics of vibrio sp AO1 growing in pure culture or in association with its hydroid host Aglaophenia octodonta (Cnidaria, Hydrozoa). Microb Ecol 59(3):555–562

    Article  PubMed  CAS  Google Scholar 

  70. Sussman M, Willis BL, Victor S, Bourne DG (2008) Coral pathogens identified for white syndrome (WS) epizootics in the Indo- Pacific. PLoS One 3:1–4

    Article  Google Scholar 

  71. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  72. Toren A, Landau L, Kushmaro A, Loya Y, Rosenberg E (1998) Effect of temperature on adhesion of Vibrio strain AK- 1 to Oculina patagonica and on coral bleaching. Appl Environ Microbiol 64:1379–1384

    PubMed  CAS  Google Scholar 

  73. Vacelet J (1975) Electron microscope study of the association between bacteria and sponges of the genus Verongia (Dictyoceratida). J Micros Biol Cell 23:271–288

    Google Scholar 

  74. Vacelet J (1979) L place de spongiaires dans les écosystèmes trophiques marins. In: Boury-Esnault N (ed) Biologie Des Spongiaires. CNRS, Paris, pp 259–270

    Google Scholar 

  75. Vacelet, J.: Combating the Epidemic which is Decimating Sponges in the Mediterranean, Near East and Europe: Algeria, Cyprus, Egypt, Lebanon, Malta, Morocco, Syria, Tunisia, Turkey and Yugoslavia. Technical report. FAO-FI-TCP/RAB/8853, Rome (1994) pp. 44

  76. Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria. J Exp Mar Biol Ecol 30:301–314

    Article  Google Scholar 

  77. Vacelet J, Vacelet E, Gaino E, Gallissian MF (1994) Bacterial attack of spongin skeleton during the 1986–1990 Mediterranean sponge disease. In: van Soest RWM, van Kempen ThMG, Braekman JC (eds) Sponges in Time and Space. Balkema AA, Rotterdam, pp 355–362

    Google Scholar 

  78. Vezzulli L, Previati M, Pruzzo C, Marchese A, Bourne DG, Cerrano C, Vibrio Sea Consortium (2010) Vibrio infections triggering mass mortality events in a warming Mediterranean Sea. Environ Microbiol 12(7):2007–2019

    Article  PubMed  CAS  Google Scholar 

  79. Vigliotta G, Nutricati E, Carata E, Tredici SM, De Stefano M, Pontieri P, Massardo DR, Prati MV, De Bellis L, Alifano P (2007) Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic gamma-proteobacterium. Appl Environ Microbiol 73:3556–3565

    Article  PubMed  CAS  Google Scholar 

  80. Webster NS (2007) Minireview. Sponge disease: a global threat? Environ Microbiol 9(6):1363–1375

    Article  PubMed  CAS  Google Scholar 

  81. Webster NS, Xavier JR, Freckelton M, Motti CA, Cobb R (2008) Shifts in microbial and chemical patterns within the marine sponge Aplysina aerophoba during a disease outbreak. Environ Microbiol 10:3366–3376

    Article  PubMed  CAS  Google Scholar 

  82. Webster NS, Blackall LL (2009) What do we really know about sponge-microbial symbioses? ISME J 3(1):1–3

    Article  PubMed  CAS  Google Scholar 

  83. West PA, Colwell RR (1984) Identification and classification of Vibrionaceae: an overview. In: Colwell RR (ed) Vibrios in the Environment. John Wiley, New York, pp 205–363

    Google Scholar 

  84. Wilkinson CR (1978) Microbial association in sponges. I. Ecology, physiology and microbial population of coral reef sponges. Mar Biol 49:161–167

    Article  Google Scholar 

  85. Wilkinson CR, Nowak M, Austin B, Colwell RR (1981) Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges. Microb Ecol 7:13–21

    Article  Google Scholar 

  86. Wulff JL (2006) Rapid diversity and abundance decline in a Caribbean coral reef sponge community. Biol Conserv 127:167–176

    Article  Google Scholar 

  87. Zhang XH, Austin B (2000) Pathogenicity of Vibrio harveyi to salmonids. J Fish Dis 23:93–102

    Article  Google Scholar 

  88. Zorrilla I, Arijo S, Chabrillon M, Diaz P, Martinez-Manzanares E, Balebona MC, Morinigo MA (2002) Vibrio species isolated from diseased farmed sole, Solea senegalensis. J Fish Dis 26:103–108

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Manuel Maldonado (Department of Marine Ecology, Centro de Estudios Avanzados de Blanes, Girona, Spain) for the precious comments and suggestions. The National Interuniversities Consortium for Marine Sciences (CONISMA) provided infrastructures and financial support. Specifically, the research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement No. 266445 for the project Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors (VECTORS) and by the Euromediterranean Center for Climate Changes - CMCC (Italy- Israel Cooperation Programme on Environment Research and Development, funded by the Italian Ministry for the Environment, the Land and the Sea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loredana Stabili.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stabili, L., Cardone, F., Alifano, P. et al. Epidemic Mortality of the Sponge Ircinia variabilis (Schmidt, 1862) Associated to Proliferation of a Vibrio Bacterium. Microb Ecol 64, 802–813 (2012). https://doi.org/10.1007/s00248-012-0068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0068-0

Keywords

Navigation