Skip to main content
Log in

Labile and Recalcitrant Organic Matter Utilization by River Biofilm Under Increasing Water Temperature

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Microbial biofilms in rivers contribute to the decomposition of the available organic matter which typically shows changes in composition and bioavailability due to their origin, seasonality, and watershed characteristics. In the context of global warming, enhanced biofilm organic matter decomposition would be expected but this effect could be specific when either a labile or a recalcitrant organic matter source would be available. A laboratory experiment was performed to mimic the effect of the predicted increase in river water temperature (+4 °C above an ambient temperature) on the microbial biofilm under differential organic matter sources. The biofilm microbial community responded to higher water temperature by increasing bacterial cell number, respiratory activity (electron transport system) and microbial extracellular enzymes (extracellular enzyme activity). At higher temperature, the phenol oxidase enzyme explained a large fraction of respiratory activity variation suggesting an enhanced microbial use of degradation products from humic substances. The decomposition of hemicellulose (β-xylosidase activity) seemed to be also favored by warmer conditions. However, at ambient temperature, the enzymes highly responsible for respiration activity variation were β-glucosidase and leu-aminopeptidase, suggesting an enhanced microbial use of polysaccharides and peptides degradation products. The addition of labile dissolved organic carbon (DOC; dipeptide plus cellobiose) caused a further augmentation of heterotrophic biomass and respiratory activity. The changes in the fluorescence index and the ratio Abs250/total DOC indicated that higher temperature accelerated the rates of DOC degradation. The experiment showed that the more bioavailable organic matter was rapidly cycled irrespective of higher temperature while degradation of recalcitrant substances was enhanced by warming. Thus, pulses of carbon at higher water temperature might have consequences for DOC processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Acuña V, Tockner K (2010) The effects of alterations in temperature and flow regime on organic carbon dynamics in Mediterranean river networks. Glob Chang Biol 16:2638–2650

    Google Scholar 

  2. Amon RMW, Benner R (1996) Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41(1):41–51

    Article  CAS  Google Scholar 

  3. Andrews JA, Matamala R, Westover KM, Schlesinger WH (2000) Temperature effects on the diversity of soil heterotrophs and the delta C-13 of soil-respired CO2. Soil Biol Biochem 32(5):699–706

    Article  CAS  Google Scholar 

  4. Artigas J, Romaní AM, Gaudes A, Muñoz I, Sabater S (2009) Organic matter availability structures microbial biomass and activity in a Mediterranean stream. Freshw Biol 54(10):2025–2036

    Article  CAS  Google Scholar 

  5. Artigas J, Romani AM, Sabater S (2008) Relating nutrient molar ratios of microbial attached communities to organic matter utilization in a forested stream. Fundam Appl Limnol 173(3):255–264

    Article  CAS  Google Scholar 

  6. Baulch HM, Schindler DW, Turner MA, Findlay DL, Paterson MJ, Vinebrooke RD (2005) Effects of warming on benthic communities in a boreal lake: implications of climate change. Limnol Oceanogr 50(5):1377–1392

    Article  Google Scholar 

  7. Berggren M, Laudon H, Jonsson A, Jansson M (2010) Nutrient constraints on metabolism affect the temperature regulation of aquatic bacterial growth efficiency. Microb Ecol 60:894–902

    Article  PubMed  CAS  Google Scholar 

  8. Bertilsson S, Tranvik LJ (2000) Photochemical transformation of dissolved organic matter in lakes. Limnol Oceanogr 45(4):753–762

    Article  CAS  Google Scholar 

  9. Bianchi TS, Filley T, Dria K, Hatcher PG (2004) Temporal variability in sources of dissolved organic carbon in the lower Mississippi River. Geochim Cosmochim Acta 68(5):959–967

    Article  CAS  Google Scholar 

  10. Blenkinsopp SA, Lock MA (1990) The measurement of electron-transport system activity in river biofilms. Water Res 24(4):441–445

    Article  CAS  Google Scholar 

  11. Cabaniss SE, Madey G, Leff L, Maurice PA, Wetzel R (2005) A stochastic model for the synthesis and degradation of natural organic matter. Part I. Data structures and reaction kinetics. Biogeochemistry 76(2):319–347

    Article  CAS  Google Scholar 

  12. Claret C (1998) Hyporrheic biofilm development on artificial substrate, as a tool for assessing trophic status of aquatic systems: first results. Ann Limnol -Int J Lim 34(2):119–128

    Article  Google Scholar 

  13. Conant RT, Drijber RA, Haddix ML, Parton WJ, Paul EA, Plante AF, Six J, Steinweg JM (2008) Sensitivity of organic matter decomposition to warming varies with its quality. Glob Chang Biol 14(4):868–877

    Article  Google Scholar 

  14. Conen F, Leifeld J, Seth B, Alewell C (2006) Warming mineralises young and old soil carbon equally. Biogeosciences 3(4):515–519

    Article  CAS  Google Scholar 

  15. Chróst RJ, Overbeck J (1990) Substrate ectoenzyme interaction: significance of beta-glucosidase activity for glucose-metabolism by aquatic bacteria. Arch Hydrobiol 34:93–98

    Google Scholar 

  16. Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173

    Article  PubMed  CAS  Google Scholar 

  17. De Haan H (1993) Solar UV-light penetration and photodegradation of humic substances in peaty lake water. Limnol Oceanogr 38(5):1072–1076

    Article  Google Scholar 

  18. Deshpande V, Eriksson KE (1988) 1,4-beta-glucosidases of Sporotrichum pulverulentum. Methods Enzymol 160:415–424

    Article  CAS  Google Scholar 

  19. Díaz V, Font J, Schwartz T, Romaní AM (2011) Biofilm formation at warming temperature: acceleration of microbial colonization and microbial interactive effects. Biofouling 27(1):59–71

    Article  Google Scholar 

  20. Fang CM, Smith P, Moncrieff JB, Smith JU (2005) Similar response of labile and resistant soil organic matter pools to changes in temperature. Nature 433(7021):57–59

    Article  PubMed  CAS  Google Scholar 

  21. Fenner N, Freeman C, Lock MA, Harmens H, Reynolds B, Sparks T (2007) Interactions between elevated CO2 and warming could amplify DOC exports from peatland catchments. Environ Sci Technol 41:3146–3152

    Article  PubMed  CAS  Google Scholar 

  22. Findlay S, Sinsabaugh RL, Sobczak WV, Hoostal M (2003) Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter. Limnol Oceanogr 48(4):1608–1617

    Article  CAS  Google Scholar 

  23. Fischer H (2003) The role of biofilms in the uptake and transformation of dissolved organic matter. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic, San Diego, pp 285–313

    Google Scholar 

  24. Fischer H, Mille-Lindblom C, Zwirnmann E, Tranvik LJ (2006) Contribution of fungi and bacteria to the formation of dissolved organic carbon from decaying common reed (Phragmites australis). Arch Hydrobiol 166(1):79–97

    Article  CAS  Google Scholar 

  25. Francoeur SN, Wetzel RG (2003) Regulation of periphytic leucine-aminopeptidase activity. Aquat Microb Ecol 31(3):249–258

    Article  Google Scholar 

  26. Freeman C, Lock MA, Marxsen J, Jones SE (1990) Inhibitory effects of high molecular weight dissolved organic matter on metabolic processes in contrasted rivers and streams. Freshw Biol 24:159–166

    Article  CAS  Google Scholar 

  27. Freese HM, Karsten U, Schumannn R (2006) Bacterial abundance, activity, and viability in the eutrophic river Warnow, Northeast Germany. Microb Ecol 51:117–127

    Article  PubMed  CAS  Google Scholar 

  28. Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404(6780):858–861

    Article  PubMed  CAS  Google Scholar 

  29. Guasch H, Sabater S (1995) Seasonal variations in photosynthesis—irradiance responses by biofilms in Mediterranean streams. J Phycol 31(5):727–735

    Article  Google Scholar 

  30. Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466:479–481

    Google Scholar 

  31. Guenet B, Danger M, Abbadie L, Lacroix G (2010) Priming effect: bridging the gap between terrestrial and aquatic ecology. Ecology 91(10):2850–2861

    Article  PubMed  Google Scholar 

  32. Hach (1992) Water analysis handbook, 2nd edn. Hach, Loveland, CO

    Google Scholar 

  33. IPCC (2007) Summary for policymakers. Cambridge University Press, Cambridge

    Google Scholar 

  34. Jackson TA, Hecky RE (1980) Depression of primary productivity by humic matter in lake and reservoir waters of the boreal forest zone. Can J Fish Aquat Sci 37(12):2300–2317

    Article  Google Scholar 

  35. Jansson M, Blomqvist P, Jonsson A, Bergstrom AK (1996) Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Ortrasket. Limnol Oceanogr 41(7):1552–1559

    Article  CAS  Google Scholar 

  36. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher-plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167(2):191–194

    CAS  Google Scholar 

  37. Jenkinson DS, Adams DE, Wild A (1991) Model estimates of CO2 emissions from soil in response to global warming. Nature 351(6324):304–306

    Article  CAS  Google Scholar 

  38. Kaplan LA, Newbold JD (2003) The role of monomers in stream ecosystem metabolism. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic, San Diego, pp 99–119

    Google Scholar 

  39. Kathol M, Norf H, Arndt H, Weitere M (2009) Effects of temperature increase on the grazing of planktonic bacteria by biofilm-dwelling consumers. Aquat Microb Ecol 55(1):65–79

    Article  Google Scholar 

  40. Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433(7023):298–301

    Article  PubMed  CAS  Google Scholar 

  41. Krasner SW, Westerhoff P, Chen B, Rittmann BE, Nam S-N, Amy G (2009) Impact of wastewater treatment processes on organic carbon, organic nitrogen, and DBP precursors in effluent organic matter. Environ Sci Technol 43(8):2911–2918

    Article  PubMed  CAS  Google Scholar 

  42. Kritzberg ES, Cole JJ, Pace ML, Granéli W, Bade DL (2004) Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake 13C addition experiments. Limnol Oceanogr 49(2):588–596

    Article  CAS  Google Scholar 

  43. Lachke AH (1988) 1,4-beta-d-xylan xylohydrolase of Sclerotium rolfsii. Methods Enzymol 160:679–684

    Article  CAS  Google Scholar 

  44. McCallister SL, del Giorgio PA (2998) Direct measurement of the δ13C signature of carbon respired by bacteria in lakes: linkages to potential carbon sources, ecosystem baseline metabolism, and CO2 fluxes. Limnol Oceanogr 53(4):1204–1216

    Article  Google Scholar 

  45. McDonald S, Bishop AG, Prenzler PD, Robards K (2004) Analytical chemistry of freshwater humic substances. Anal Chim Acta 527(2):105–124

    Article  CAS  Google Scholar 

  46. McKnight DM, Boyer EW, Westerhoff PK, Doran PT, Kulbe T, Andersen DT (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46(1):38–48

    Article  CAS  Google Scholar 

  47. Meyer JL (1994) The microbial loop in flowing waters. Microb Ecol 28(2):195–199

    Article  CAS  Google Scholar 

  48. Meyer JL, Edwards RT, Risley R (1987) Bacterial growth on dissolved organic carbon from a blackwater river. Microb Ecol 13:13–29

    Article  CAS  Google Scholar 

  49. Morris DP, Hargreaves BR (1997) The role of photochemical degradation of dissolved organic carbon in regulating the UV transparency of three lakes on the Pocono Plateau. Limnol Oceanogr 42(2):239–249

    Article  CAS  Google Scholar 

  50. Murphy J, Riley JP (1962) A modified single solution for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  51. Peter H, Ylla I, Gudasz C, Romaní AM, Sabater S, Tranvik L (2011) Multifunctionality and diversity in bacterial biofilms. PLoS One 6(8):e23225

    Article  PubMed  CAS  Google Scholar 

  52. Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166(11):810–832

    Article  CAS  Google Scholar 

  53. Porcal P, Koprivnjak JF, Molot LA, Dillon PJ (2009) Humic substances-part 7: the biogeochemistry of dissolved organic carbon and its interactions with climate change. Environ Sci Pollut Res 16(6):714–726

    Article  CAS  Google Scholar 

  54. Reichstein M, Katterer T, Andren O, Ciais P, Schulze ED, Cramer W, Papale D, Valentini R (2005) Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences 2(4):317–321

    Article  CAS  Google Scholar 

  55. Romaní AM, Artigas J, Ylla I (2012) Extracellular enzymes in aquatic biofilms: microbial interactions versus water quality effects in the use of organic matter. In: Lear G, Lewis GD (eds) Microbial biofilms: current research and applications. Caister Academic Press, New Zealand

    Google Scholar 

  56. Romaní AM, Guasch H, Muñoz I, Ruana J, Vilalta E, Schwartz T, Emtiazi F, Sabater S (2004) Biofilm structure and function and possible implications for riverine DOC dynamics. Microb Ecol 47(4):316–328

    Article  PubMed  Google Scholar 

  57. Romaní AM, Vázquez E, Butturini A (2006) Microbial availability and size fractionation of dissolved organic carbon after drought in an intermittent stream: biogeochemical link across the stream-riparian interface. Microb Ecol 52(3):501–512

    Article  PubMed  Google Scholar 

  58. Sand-Jensen K, Pedersen NL, Sondergaard M (2007) Bacterial metabolism in small temperate streams under contemporary and future climates. Freshw Biol 52:2340–2353

    Article  Google Scholar 

  59. Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    Article  CAS  Google Scholar 

  60. Sinsabaugh RL, Osgood MP, Findlay S (1994) Enzymatic models for estimating decomposition rates of particulate detritus. J N Am Bentholl Soc 13(2):160–169

    Article  Google Scholar 

  61. Thornley JHM, Cannell MGR (2001) Soil carbon storage response to temperature: an hypothesis. Ann Bot 87(5):591–598

    Article  CAS  Google Scholar 

  62. Tranvik LJ (1988) Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microb Ecol 16(3):311–322

    Article  CAS  Google Scholar 

  63. Vázquez E, Amalfitano S, Fazi S, Butturini A (2011) Dissolved organic matter composition in a fragmented Mediterranean fluvial system under severe drought conditions. Biogeochemistry 102:50–72

    Article  Google Scholar 

  64. Vázquez E, Romaní AM, Sabater F, Butturini A (2007) Effects of the dry-wet hydrological shift on dissolved organic carbon dynamics and fate across stream-riparian interface in a Mediterranean catchment. Ecosystems 10(2):239–251

    Article  Google Scholar 

  65. Waldrop MP, Firestone MK (2004) Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions. Biogeochemistry 67(2):235–248

    Article  CAS  Google Scholar 

  66. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416(6879):389–395

    Article  PubMed  CAS  Google Scholar 

  67. Wetzel RG, Hatcher PG, Bianchi TS (1995) Natural photolysis by ultraviolet irradiance of recalcitrant dissolved organic matter to simple substrates for rapid bacterial metabolism. Limnol Oceanogr 40(8):1369–1380

    Article  CAS  Google Scholar 

  68. Ylla I, Borrego C, Romaní AM, Sabater S (2009) Availability of glucose and light modulates the structure and function of a microbial biofilm. FEMS Microbiol Ecol 69(1):27–42

    Article  PubMed  CAS  Google Scholar 

  69. Ylla I, Sanpera-Calbet I, Vázquez E, Romaní A, Muñoz I, Butturini A, Sabater S (2010) Organic matter availability during pre- and post-drought periods in a Mediterranean stream. Hydrobiologia 657:217–232

    Article  CAS  Google Scholar 

  70. Zoppini AM, Amalfitano S, Fazi S, Puddu A (2010) Dynamics of a benthic microbial community in a riverine environment subject to hydrological fluctuations (Mulargia River, Italy). Hydrobiologia 657:37–51

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by projects CGL2007-65549/BOS, CGL2008-05618-C02/BOS, CGL2011-30151-C02-01, and SCARCE (Consolider-Ingenio CSD2009-00065) of the Spanish Ministry of Economy and Competitiveness. We thank Juanita Mora for her help in the laboratory analysis and Helmut Fischer for his advice on DOC quality interpretation. We also thank four anonymous reviewers for their suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Ylla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ylla, I., Romaní, A.M. & Sabater, S. Labile and Recalcitrant Organic Matter Utilization by River Biofilm Under Increasing Water Temperature. Microb Ecol 64, 593–604 (2012). https://doi.org/10.1007/s00248-012-0062-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-012-0062-6

Keywords

Navigation