Skip to main content
Log in

In Situ UVA Exposure Modulates Change in the Uptake of Radiophosphate in Size-Fractionated Plankton Assemblages Following UVR Exposure

  • MicroBiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

We investigated the effect of ultraviolet radiation (UVR) on the uptake and partitioning of radiophosphate (33PO 3−4 ) in size-fractionated plankton assemblages (0.2–0.8, 0.8–2.0 and >2.0 μm) collected from nine freshwater lakes located in Saskatchewan, Canada. A significant (p < 0.05) reduction in 33PO 3−4 uptake by plankton was observed in seven of the nine lakes. Plankton >2.0 μm were generally unaffected by UVR, whereas the 0.2–0.8 μm size fraction exhibited severe photoinhibition. The effect of UVR on the 0.8–2.0 μm size fraction was variable, ranging from significant reductions to significant increases in 33PO 3−4 uptake. The >2.0 μm size fraction was composed of a diversity of phytoplankton genera, suggesting that P uptake mechanisms for a range of phytoplankton are resistant to UVR. Our ability to detect a UVR effect on specific plankton size fractions was confounded by the resolution of the analysis. That is, only examining the <2.0 and >2.0 μm size fractions concealed the effect of UVR on plankton <0.8 μm. The magnitude of decrease in P uptake by plankton <0.8 μm was significantly and negatively correlated with in situ UVA exposure. Our results underscore the need for studies to consider both the size resolution of their analysis (i.e., the size of target organisms) and the ambient light conditions under which organisms may have acclimated before generalizing results across limnetic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Allen CD, Smith REH (2002) The response of planktonic phosphate uptake and turnover to ultraviolet radiation in Lake Erie. Can J Fish Aquat Sci 59:778–786

    Article  Google Scholar 

  2. Arvola L (1981) Spectrophotometric determination of chlorophyll a and phaeopigments in ethanol extractions. Ann Bot Fennici 18:221–227

    CAS  Google Scholar 

  3. Aubriot L, Conde D, Bonilla S, Sommaruga R (2004) Phosphate uptake behavior of natural phytoplankton during exposure to solar ultraviolet radiation in a shallow coastal lagoon. Mar Biol 144:623–631

    Article  CAS  Google Scholar 

  4. Balseiro E, Souza MS, Modenutti B, Reissig M (2008) Living in transparent lakes: low food P:C ratio decreases antioxidant response to ultraviolet radiation in Daphnia. Limnol Oceanogr 53:2383–2390

    Article  CAS  Google Scholar 

  5. Bentzen E, Taylor WD (1991) Estimating Michaelis-Menten parameters and lake water phosphate by the Rigler bioassay: importance of fitting technique, plankton size and substrate range. Can J Fish Aquat Sci 48:73–83

    Article  CAS  Google Scholar 

  6. Bergmann M, Peters RH (1980) A simple reflectance method for the measurement of particulate pigment in lake water and its application to phosphorus–chlorophyll–seston relationships. J Fish Aquat Sci 37:111–114

    Article  CAS  Google Scholar 

  7. Bertoni R, Callieri C (1999) Effects of UVB radiation on freshwater autotrophic and heterotrophic picoplankton in a subalpine lake. J Plank Res 21:1373–1388

    Article  Google Scholar 

  8. Bouchard JN, Roy S, Ferreyra G, Campbell DA, Curtosi A (2005) Ultraviolet-B effects on photosystem II efficiency of natural phytoplankton communities from Antarctica. Polar Biol 28:607–618

    Article  Google Scholar 

  9. Carreto JI, Carignan MO, Daleo G, De Marco SG (1990) Occurance of mycosporin-like amino acids in the red-tide dinoflagellete Alexandrium excavatum: UV-photoprotective compounds? J Plank Res 12:909–921

    Article  CAS  Google Scholar 

  10. Chisholm SW (1992) In: Falkowski PG, Woodhead AD (eds) Phytoplankton size. Primary productivity and biogeochemical cycles in the seas. Plenum Press, New York, pp 213–237

    Google Scholar 

  11. Currie DJ, Bentzen E, Kalff J (1986) Does algal-bacterial phosphorus partitioning vary among lakes? A comparative study of orthophosphate uptake and alkaline phosphatase activity in freshwater. Can J Fish Aquat Sci 43:311–318

    Article  CAS  Google Scholar 

  12. Currie DJ, Kalff J (1984) A comparison of the abilities of freshwater algae and bacteria to aquire and retain phosphorus. Limnol Oceanogr 29:298–310

    Article  CAS  Google Scholar 

  13. Fleming ED, Castenholz RW (2008) Effects of nitrogen source on the synthesis of the UV-screening compound, scytonemin, in the cyanobacterium Nostoc punctiforme PCC 73102. Microb Ecol 63:301–308

    Article  CAS  Google Scholar 

  14. Fernández RO, Pizarro RA (1996) Lethal effect induced in Pseudomonas aeruginosa exposed to ultraviolet-A radiation. Photochem Photobiol 64:334–339

    Article  PubMed  Google Scholar 

  15. Friedberg EC (1985) DNA Repair. W.H. Freeman and Co, New York, p 614

    Google Scholar 

  16. Frost PC, Xenopoulos MA (2002) Ambient solar ultraviolet radiation and its effects on phosphorus flux into boreal lake phytoplankton communities. Can J Fish Aquat Sci 59:1090–1095

    Article  CAS  Google Scholar 

  17. Furgal JA, Smith REH (1997) Ultraviolet radiation and photosynthesis by Georgian Bay phytoplankton of varying nutrient and photoadaptive status. Can J Fish Aquat Sci 54:1659–1667

    Google Scholar 

  18. Garciapichel F (1994) A model for internal self-shading in planktonic organisms and its implication for the usefulness of ultraviolet suncreeens. Limnol Oceanogr 39:1704–1717

    Article  Google Scholar 

  19. Harrison JW, Smith RE (2011) Deep chlorophyll maxima and UVR acclimation by epilimnetic phytoplankton. Freshwat Biol 56:980–992

    Article  CAS  Google Scholar 

  20. Hecky RE, Kilham P (1988) Nutrient limitation of phytoplankton in freshwater and marine environments: a review of recent evidence on the effects of enrichment. Limnol Oceanogr 3:796–822

    Article  Google Scholar 

  21. Helbling EW, Villafane V, Ferrario M, Holmhansen O (1992) Impact of natural ultraviolet-radiation on rates of photsynthesis and on specific marine-phyoplankton species. Mar Ecol Prog Ser 80:89–100

    Article  Google Scholar 

  22. Heraud P, Roberts S, Shelly K, Beardall J (2005) Interactions between UV-B and phosphorus nutrition. II. Effects on rates of damage and repair. J Phycol 41:1212–1218

    Article  CAS  Google Scholar 

  23. Hessen DO, Leu E, Faerovig PJ, Petersen SF (2008) Light and spectral properties as determinants of C:N:P-ratios in phytoplankton. Deep-Sea Res Pt II 55:2169–2175

    Article  CAS  Google Scholar 

  24. Hiriart-Baer VP, Smith REH (2004) Models for ultraviolet radiation-dependent photoinhibition of Lake Erie phytoplankton. Limnol Oceanogr 49:202–214

    Article  CAS  Google Scholar 

  25. Hiriart VP, Greenberg BM, Guildford SJ, Smith REH (2002) Effects of ultraviolet radiation on rates and size distribution of primary production by Lake Erie phytoplankton. Can J Fish Aquat Sci 59:317–328

    Article  Google Scholar 

  26. Hudson JJ, Taylor WD (1996) Measuring regeneration of dissolved phosphorus in planktonic communities. Limnol Oceanogr 41:1560–1565

    Article  CAS  Google Scholar 

  27. Hudson JJ, Taylor WD (2005) Rapid estimation of phosphate at picomolar concentrations in freshwater lakes with potential application to P-limited marine systems. Aquat Sci 67:316–325

    CAS  Google Scholar 

  28. Hudson JJ, Taylor WD, Schindler DW (2000) Phosphate concentrations in lakes. Nature 406:54–56

    Article  PubMed  CAS  Google Scholar 

  29. Jansson M (1988) Phosphate-uptake and utilization by bacteria and algae. Hydrobiol 170:177–189

    Article  CAS  Google Scholar 

  30. Jeffrey WH, Aas P, Lyons MM, Coffin RB, Pledger RJ, Mitchell DL (1996) Ambient solar radiation-induced photodamage in marine bacterioplankton. Photochem Photobiol 64:419–427

    Article  CAS  Google Scholar 

  31. Jeffrey WH, Pledger RJ, Aas P, Hager S, Coffin RB, VonHaven R, Mitchell DL (1996) Diel and depth profiles of DNA photodamage in bacterioplankton exposed to ambient solar ultraviolet radiation. Mar Ecol Prog Ser 137:283–291

    Article  CAS  Google Scholar 

  32. Karentz D, Cleaver JE, Mitchell DL (1991) Cell survival characteristics and molecular responses of Antarctic phytoplankton to ultraviolet-B radiation. J Phycol 27:326–341

    Article  CAS  Google Scholar 

  33. Korbee Peinado N, Abdala Díaz RT, Figueroa FL, Helbling EW (2004) Ammonium and UV radiation stimulate the accumulation of mycosporine-like amino acids in Porphyra columbina (Rhodophyta) from Patagonia, Argentina. J Phycol 40:248–259

    Article  Google Scholar 

  34. Kubitschek HE, Doyle RJ (1981) Growth delay induced in Escherichia coli by near-ultraviolet radiation: relationship to membrane transport functions. Photochem Photobiol 33:695–702

    Article  PubMed  CAS  Google Scholar 

  35. Laurion I, Vincent WF (1998) Cell size versus taxonomic composition as determinants of UV-sensitivity in natural phytoplankton communities. Limnol Oceanogr 43:1774–1779

    CAS  Google Scholar 

  36. Lesser MP (1996) Acclimation of phytoplankton to UV-B radiation: oxidative stress and photoinhibition of photosynthesis are not prevented by UV-absorbing compounds in the dinoflagellate Prorocentrum micans. Mar Ecol Prog Ser 132:287–297

    Article  CAS  Google Scholar 

  37. Lesser MP, Cullen JJ, Neale PJ (1994) Carbon uptake in a marine diatom during acute exposure to ultraviolet-B radiation—relative importance of damage and repair. J Phycol 30:183–192

    Article  CAS  Google Scholar 

  38. Milot-Roy V, Vincent WF (1994) UV radiation effects on photosynthesis: the importance of near-surface thermoclines in a subarctic lake. Ergebn Limnol 43:171–184

    Google Scholar 

  39. Moss SH, Smith KC (1981) Membrane damage can be a significant factor of inactivation of Escherichia coli by near-ultraviolet radiation. Photochem Photobiol 33:203–210

    Article  PubMed  CAS  Google Scholar 

  40. Nalewajko C, Paul B, Lee K, Shear H (1986) Light history, phosphorus status, and the occurance of light stimulation or inhibition of phosphate-uptake in Lake-Superior phytoplankton and bacteria. Can J Fish Aquat Sci 43:329–335

    Article  CAS  Google Scholar 

  41. Neale PJ, Davis RF, Cullen JJ (1998) Interactive effects of ozone depletion and vertical mixing on photosynthesis of Antarctic phytoplankton. Nature 392:585–589

    Article  CAS  Google Scholar 

  42. Pausz C, Herndl GJ (2002) Role of nitrogen versus phosphorus availability on the effect of UV radiation on bacterioplankton and their recovery from previous UV stress. Aquat Microb Ecol 29:89–95

    Article  Google Scholar 

  43. Pettersson K, Jansson M (1978) Determination of phosphatase activity in lake water a study of methods. Verh Int Ver Limnol 20:1226–1230

    Google Scholar 

  44. Rath J, Adhikary SP (2007) Response of the estuarine cyanobacterium Lyngbya aestuarii to UV-B radiation. J Appl Phycol 19:529–536

    Article  CAS  Google Scholar 

  45. Schindler DW (1977) Evolution of phosphorus limitation in lakes. Science 195:260–262

    Article  PubMed  CAS  Google Scholar 

  46. Sereda JM, Hudson JJ, Taylor WD, Demers E (2008) Fish as sources and sinks of nutrients in lakes. Freshwat Biol 53:278–289

    CAS  Google Scholar 

  47. Sereda JM, Vandergucht DM, Hudson JJ (2011) Disruption of planktonic phosphorus cycling by ultraviolet radiation. Hydrobiol 665:205–211

    Article  CAS  Google Scholar 

  48. Shelly K, Roberts S, Heraud P, Beardall J (2005) Interactions between UV-B exposure and phosphorus nutrition. I. Effects on growth, phosphate uptake, and chlorophyll fluorescence. J Phycol 41:1204–1211

    Article  CAS  Google Scholar 

  49. Smith REH, Furgal JA, Lean DRS (1998) The short-term effects of solar ultraviolet radiation on phytoplankton photosynthesis and photosynthate allocation under contrasting mixing regimes in Lake Ontario. J Great Lakes Res 24:427–441

    Article  CAS  Google Scholar 

  50. Sommaruga R, Obernosterer I, Herndl G, Psenner R (1997) Inhibitory effect of solar radiation on thymidine and leucine incorporation by freshwater and marine bacterioplankton. Appl Environ Microbiol 63:4178–4184

    PubMed  CAS  Google Scholar 

  51. Sommaruga R, Sattler B, Oberleiter A, Wille A, Sommaruga-Wögrath S, Psenner R, Felip M, Camarero L, Pina S, Girones R, Catalan J (1999) An in situ enclosure experiment to test the solar UV-B impact on microplankton in a high-altitude mountain lake. II. Effects on the microbial food web. J Plank Res 21:859–876

    Article  Google Scholar 

  52. Sterner RW, Hagemeier DD, Smith WL (1993) Phytoplankton nutrient limitation and food quality for daphnia. Limnol Oceanogr 38:857–871

    Article  Google Scholar 

  53. Villafane VE, Helbling EW, Holm-Hansen O, Chalker BE (1995) Acclimatization of Antarctic natural phytoplankton assemblages when exposed to solar ultraviolet radiation. J Plank Res 17:2295–2306

    Article  Google Scholar 

  54. Xenopoulos MA, Frost PC, Elser JJ (2002) Joint effects of UV radiation and phosphorus supply on algal growth rate and elemental composition. Ecology 83:423–435

    Article  Google Scholar 

  55. Xenopoulos MA, Leavitt PR, Schindler DW (2009) Ecosystem-level regulation of boreal lake phytoplankton by ultraviolet radiation. Can J Fish Aquat Sci 66:2002–2010

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NSERC (Canada) funding to JJH and University of Saskatchewan scholarship to JMS and a NSERC scholarship to DMV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff M. Sereda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sereda, J.M., Vandergucht, D.M. & Hudson, J.J. In Situ UVA Exposure Modulates Change in the Uptake of Radiophosphate in Size-Fractionated Plankton Assemblages Following UVR Exposure. Microb Ecol 63, 751–760 (2012). https://doi.org/10.1007/s00248-011-9982-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9982-9

Keywords

Navigation