Advertisement

Microbial Ecology

, Volume 62, Issue 4, pp 919–930 | Cite as

A New Insight into Allelopathic Effects of Alexandrium minutum on Photosynthesis and Respiration of the Diatom Chaetoceros neogracile Revealed by Photosynthetic-performance Analysis and Flow Cytometry

  • Aurélie Lelong
  • Hansy Haberkorn
  • Nelly Le Goïc
  • Hélène Hégaret
  • Philippe SoudantEmail author
Microbiology of Aquatic Systems

Abstract

The allelopathic effects of Alexandrium minutum, a toxic dinoflagellate, on the diatom Chaetoceros neogracile were evaluated using unialgal cultures evaluated by flow cytometry (FCM) and photosynthetic-performance analysis. Using FCM, we demonstrated that red chlorophyll fluorescence, relative cell size (Forward scatter of blue laser light, FSC) and cell complexity (Side scatter, 90°-angle scatter of blue laser light, SSC) significantly and rapidly decreased in C. neogracile cells exposed to A. minutum. Cells of C. neogracile exposed to A. minutum had fewer active photosynthetic reaction centers and sharply decreased photosynthetic efficiency. These effects were intensified with advancing A. minutum batch culture age and cell density. The supernatant of A. minutum contained the majority of the putative allelopathic compounds, and the biological activity of these compounds remained active less than 9 h after release. This paper describes for the first time specific effects of allelochemicals produced by A. minutum on the photosynthetic apparatus of microalgal target cells. The biochemical composition of A. minutum allelopathic agents, however, remains unknown and still needs to be investigated.

Keywords

Dinoflagellate Allelopathic Effect Allelopathic Activity Allelopathic Compound Allelopathic Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Isabelle Queau for providing the C. neogracile strain and Gary Wikfors for his constructive comments and English corrections. This study was supported by the French “Ministère de l’Education Nationale, de la Recherche et de la Technologie” (MENRT grant). The authors also would like to thank the anonymous reviewers for their help in improving this manuscript.

References

  1. 1.
    Antal TK, Rubin AB (2008) In vivo analysis of chlorophyll a fluorescence induction. Photosynth Res 96:217–226CrossRefPubMedGoogle Scholar
  2. 2.
    Antal TK, Matorin DN, Ilyash LV, Volgusheva AA, Osipov V, Konyuhov IV, Krendeleva TE, Rubin AB (2009) Probing of photosynthetic reactions in four phytoplanktonic algae with a PEA fluorometer. Photosynth Res 102:67–76CrossRefPubMedGoogle Scholar
  3. 3.
    Appenroth KJ, Stöckel J, Srivastava A, Strasser RJ (2001) Multiple effects of chromate on the photosynthetic apparatus of Spirodela polyrhiza as probed by OJIP chlorophyll a fluorescence measurements. Environ Pollut 115:49–64CrossRefPubMedGoogle Scholar
  4. 4.
    Arzul G, Seguel M, Guzman L, Erard-Le Denn E (1999) Comparison of allelopathic properties in three toxic Alexandrium species. Journal of Experimental Marine Biology and Ecology 232:285–295CrossRefGoogle Scholar
  5. 5.
    Barreiro A, Guisande C, Maneiro I, Vergara AR, Riveiro I, Iglesias P (2007) Zooplankton interactions with toxic phytoplankton: some implications for food web studies and algal defence strategies of feeding selectivity behaviour, toxin dilution and phytoplankton population diversity. Acta Oecologica 32:279–290CrossRefGoogle Scholar
  6. 6.
    Berglund DL, Taffs RE, Robertson NP (1987) A rapid analytical technique for flow cytometric analysis of cell viability using calcofluor white M 2 R. Cytometry 8:421–426CrossRefPubMedGoogle Scholar
  7. 7.
    Chou HN, Chen YM, Chen CY (2004) Variety of PSP toxins in four culture strains of Alexandrium minutum collected from southern Taiwan. Toxicon 43:337–340CrossRefPubMedGoogle Scholar
  8. 8.
    Dorsey J, Yentsch CM, Mayo S, McKenna C (1989) Rapid analytical technique for the assessment of cell metabolic-activity in marine microalgae. Cytometry 10:622–628CrossRefPubMedGoogle Scholar
  9. 9.
    Emura A, Matsuyama Y, Oda T (2004) Evidence for the production of a novel proteinaceous hemolytic exotoxin by dinoflagellate Alexandrium taylori. Harmful Algae 3:29–37CrossRefGoogle Scholar
  10. 10.
    Fistarol GO, Legrand C, Rengefors K, Graneli E (2004) Temporary cyst formation in phytoplankton: a response to allelopathic competitors? Environ Microbiol 6:791–798CrossRefPubMedGoogle Scholar
  11. 11.
    Fistarol GO, Legrand C, Selander E, Hummert C, Stolte W, Graneli E (2004) Allelopathy in Alexandrium spp.: effect on a natural plankton community and on algal monocultures. Aquat Microb Ecol 35:45–56CrossRefGoogle Scholar
  12. 12.
    Franco JM, Fernandez P, Reguera B (1994) Toxin profiles of natural-populations and cultures of Alexandrium-Minutum Halim from Galician (Spain) coastal waters. Journal of Applied Phycology 6:275–279CrossRefGoogle Scholar
  13. 13.
    Gantar M, Berry JP, Thomas S, Wang ML, Perez R, Rein KS (2008) Allelopathic activity among cyanobacteria and microalgae isolated from Florida freshwater habitats. FEMS Microbiol Ecol 64:55–64CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Garcés E, Bravo I, Vila M, Figueroa RI, Maso M, Sampedro N (2004) Relationship between vegetative cells and cyst production during Alexandrium minutum bloom in Arenys de Mar harbour (NW Mediterranean). J Plankton Res 26:637–645CrossRefGoogle Scholar
  15. 15.
    Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chrysophyte. Phycologia 32:234–236CrossRefGoogle Scholar
  16. 16.
    Haberkorn H, Hégaret H, Marie D, Lambert C, Soudant P (2011) Flow cytometric measurements of cellular responses in a toxic dinoflagellate, Alexandrium minutum, upon exposure to thermal, chemical and mechanical stresses. Harmful Algae 10:463–471CrossRefGoogle Scholar
  17. 17.
    Halim Y (1960) Alexandrium minutum nov. g. nov. sp. dinoflagellé provocant des “eaux rouges. Vie et Milieu 11:102–105Google Scholar
  18. 18.
    Hallegraeff GM (1992) Harmful algal blooms in the Australian region. Mar Pollut Bull 25:186–190CrossRefGoogle Scholar
  19. 19.
    Hansen PJ (1989) The red tide dinoflagellate Alexandrium tamarense: effects on behaviour and growth of a tintinnid ciliate. Mar Ecol Prog Ser 53:105–116CrossRefGoogle Scholar
  20. 20.
    Indelicato SR, Watson DA (1986) Identification of the photosynthetic pigments of the tropical benthic dinoflagellate Gambierdiscus toxicus. Marine Fisheries Review 48:44–47Google Scholar
  21. 21.
    Jeong HJ, Du Yoo Y, Park JY, Song JY, Kim ST, Lee SH, Kim KY, Yih WH (2005) Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquatic Microbial Ecology 40:133–150CrossRefGoogle Scholar
  22. 22.
    Jochem FJ (2000) Probing the physiological state of phytoplankton at the single-cell level. Scientia Marina 64:183–195CrossRefGoogle Scholar
  23. 23.
    Jonsson PR, Pavia H, Toth G (2009) Formation of harmful algal blooms cannot be explained by allelopathic interactions. Proc Natl Acad Sci USA 106:11177–11182CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Juhl AR, Martins CA, Anderson DM (2008) Toxicity of Alexandrium lusitanicum to gastropod larvae is not caused by paralytic-shellfish-poisoning toxins. Harmful Algae 7:567–573CrossRefGoogle Scholar
  25. 25.
    Labib W, Halim Y (1995) Diel vertical migration and toxicity of Alexandrium minutum Halim red tide, in Alexandria, Egypt. Marine Life 5:11–17Google Scholar
  26. 26.
    Legrand C, Graneli E, Carlsson P (1998) Induced phagotrophy in the photosynthetic dinoflagellate Heterocapsa triquetra. Aquatic Microbial Ecology 15:65–75CrossRefGoogle Scholar
  27. 27.
    Li SC, Wang WX, Hsieh DPH (2002) Effects of toxic dinoflagellate Alexandrium tamarense on the energy budgets and growth of two marine bivalves. Mar Environ Res 53:145–160CrossRefPubMedGoogle Scholar
  28. 28.
    Ma HY, Krock B, Tillmann U, Cembella A (2009) Preliminary characterization of extracellular allelochemicals of the toxic marine dinoflagellate Alexandrium tamarense using a Rhodomonas salina bioassay. Mar Drugs 7:497–522CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Marie D, Partensky F, Jacquet S, Vaulot D (1997) Enumeration and cell cycle analysis of natural populations of marine picoplankton by flow cytometry using the nucleic acid stain SYBR Green I. Appl Environ Microbiol 63:186PubMedPubMedCentralGoogle Scholar
  30. 30.
    Marie D, Partensky F, Vaulot D, Brussaard C (1999) Enumeration of phytoplankton, bacteria, and viruses in marine samples. In: Robinson JP (ed) Current protocols in cytometry. John Wiley & Sons Inc, New York, pp. 11.11.11–11.11.15Google Scholar
  31. 31.
    Menezes M, Branco S (2007) Bloom of Alexandrium minutum Halim on Rio de Janeiro coast: occurrence and toxicity. Harmful Algae News 34:7–9Google Scholar
  32. 32.
    Miller-Morey JS, Van Dolah FM (2004) Differential responses of stress proteins, antioxidant enzymes, and photosynthetic efficiency to physiological stresses in the Florida red tide dinoflagellate, Karenia brevis. Comp Biochem Physiol C Toxicol Pharmacol 138:493–505CrossRefPubMedGoogle Scholar
  33. 33.
    Ogata T, Kodama M (1986) Ichthyotoxicity found in cultured media of Protogonyaulax spp. Mar Biol 92:31–34CrossRefGoogle Scholar
  34. 34.
    Pratt R, Fong J (1940) Studies on Chlorella vulgaris II. Further evidence that Chlorella cells form a growth-inhibiting substance. Am J Bot 27:431–436CrossRefGoogle Scholar
  35. 35.
    Regel RH, Ferris JM, Ganf GG, Brookes JD (2002) Algal esterase activity as a biomeasure of environmental degradation in a freshwater creek. Aquat Toxicol 59:209–223CrossRefPubMedGoogle Scholar
  36. 36.
    Rengefors K, Legrand C (2001) Toxicity in Peridinium aciculiferum—an adaptive strategy to outcompete other winter phytoplankton? Limnol Oceanogr 46:1990–1997CrossRefGoogle Scholar
  37. 37.
    Rizvi SJH, Rizvi V (1992) Allelopathy: basic and applied aspects. Chapman & Hall, LondonCrossRefGoogle Scholar
  38. 38.
    Schlegel I, Doan NT, de Chazal N, Smith GD (1998) Antibiotic activity of new cyanobacterial isolates from Australia and Asia against green algae and cyanobacteria. J Appl Phycol 10:471–479CrossRefGoogle Scholar
  39. 39.
    Siano R, Montresor M (2005) Morphology, ultrastructure and feeding behaviour of Protoperidinium vorax sp. nov. (Dinophyceae, Peridiniales). European Journal of Phycology 40:221–232CrossRefGoogle Scholar
  40. 40.
    Smith GD, Doan NT (1999) Cyanobacterial metabolites with bioactivity against photosynthesis in cyanobacteria, algae and higher plants. J Appl Phycol 11:337–344CrossRefGoogle Scholar
  41. 41.
    Stamp N (2003) Out of the quagmire of plant defense hypotheses. Q Rev Biol 78:23–55CrossRefPubMedGoogle Scholar
  42. 42.
    Strasser BJ, Strasser RJ (1995) Measuring fast fluorescence transients to address environmental questions: the JIP-test. In: Mathis P (ed) Photosynthesis: from light to biosphere, vol. V. Kluwer Academic Publishers, DordrechtGoogle Scholar
  43. 43.
    Suikkanen S, Fistarol GO, Graneli E (2004) Allelopathic effects of the Baltic cyanobacteria Nodularia spumigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. J Exp Mar Biol Ecol 308:85–101CrossRefGoogle Scholar
  44. 44.
    Thach LB, Shapcott A, Schmidt S, Critchley C (2007) The OJIP fast fluorescence rise characterizes Graptophyllum species and their stress responses. Photosynth Res 94:423–436CrossRefGoogle Scholar
  45. 45.
    Tillmann U (2003) Kill and eat your predator: a winning strategy of the planktonic flagellate Prymnesium parvum. Aquat Microb Ecol 32:73–84CrossRefGoogle Scholar
  46. 46.
    Tillmann U, John U (2002) Toxic effects of Alexandrium spp. on heterotrophic dinoflagellates: an allelochemical defence mechanism independent of PSP-toxin content. Mar Ecol Prog Ser 230:47–58CrossRefGoogle Scholar
  47. 47.
    Tillmann U, John U, Cembella A (2007) On the allelochemical potency of the marine dinoflagellate Alexandrium ostenfeldii against heterotrophic and autotrophic protists. J Plankton Res 29:527–543CrossRefGoogle Scholar
  48. 48.
    Tillmann U, Alpermann T, John U, Cembella A (2008) Allelochemical interactions and short-term effects of the dinoflagellate Alexandrium on selected photoautotrophic and heterotrophic protists. Harmful Algae 7:52–64CrossRefGoogle Scholar
  49. 49.
    Tillmann U, Alpermann TL, da Purificacao RC, Krock B, Cembella A (2009) Intra-population clonal variability in allelochemical potency of the toxigenic dinoflagellate Alexandrium tamarense. Harmful Algae 8:759–769CrossRefGoogle Scholar
  50. 50.
    Touzet N, Franco JM, Raine R (2007) Characterization of nontoxic and toxin-producing strains of Alexandrium minutum (Dinophyceae) in Irish coastal waters. Appl Environ Microbiol 73:3333–3342CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Vila M, Giacobbe MG, Maso M, Gangemi E, Penna A, Sampedro N, Azzaro F, Camp J, Galluzzi L (2005) A comparative study on recurrent blooms of Alexandrium minutum in two Mediterranean coastal areas. Harmful Algae 4:673–695CrossRefGoogle Scholar
  52. 52.
    von Elert E, Juttner F (1997) Phosphorus limitation and not light controls the extracellular release of allelopathic compounds by Trichormus doliolum (cyanobacteria). Limnol Oceanogr 42:1796–1802CrossRefGoogle Scholar
  53. 53.
    Wang Y, Yu ZM, Song XX, Zhang SD (2006) Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures. J Sea Res 56:17–26CrossRefGoogle Scholar
  54. 54.
    Wyatt T, Jenkinson IR (1997) Notes on Alexandrium population dynamics. J Plankton Res 19:551–575CrossRefGoogle Scholar
  55. 55.
    Yamasaki Y, Katsuo D, Nakayasu S, Salati C, Duan J, Zou Y, Matsuyama Y, Yamaguchi K, Oda T (2008) Purification and characterization of a novel high molecular weight exotoxin produced by red tide phytoplankton, Alexandrium tamarense. J Biochem Mol Toxicol 22:405–415CrossRefPubMedGoogle Scholar
  56. 56.
    Yentsch CM, Cucci TL, Mague FC (1988) Profiting from the visible spectrum. Biological oceanography 6:477–492Google Scholar
  57. 57.
    Yin J, Xie J, Yang WD, Li HY, Liu JS (2010) Effect of Alexandrium tamarense on three bloom-forming algae. Chin J Oceanol Limnol 28:940–944CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Aurélie Lelong
    • 1
  • Hansy Haberkorn
    • 1
    • 2
  • Nelly Le Goïc
    • 1
  • Hélène Hégaret
    • 1
  • Philippe Soudant
    • 1
    Email author
  1. 1.Laboratoire des sciences de l’environnement marin (LEMAR), UMR6539Institut Universitaire Européen de la Mer (IUEM)PlouzanéFrance
  2. 2.IFREMER, Département Environnement, Microbiologie et PhycotoxinesNantes Cedex 03France

Personalised recommendations