Skip to main content
Log in

Characterizing the Microbial Colonization of a Dolostone Quarry: Implications for Stone Biodeterioration and Response to Biocide Treatments

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

This study examines the microbial colonization of three fronts of an abandoned dolostone quarry (Redueña, Madrid, Spain) exposed to atmospheric conditions for different time periods since Roman times to the present. Through scanning electron microscopy in backscattered electron mode (SEM-BSE), endolithic colonization was predominantly detected in the most recently exposed front, while in the longer exposed quarry fronts, epilithic forms of growth were most often observed. These observations were confirmed by denaturing gradient gel electrophoresis (DGGE) analysis. Based on the distribution pattern of microbial colonization in the different quarry fronts, we then established a sequence of colonization events that took place over this long time frame. Bioalteration processes related to this sequential colonization were also identified. Characterizing these sequential processes can be useful for interpreting biodeterioration processes in historic dolostone monuments, especially those affecting constructions in the area of the Redueña stone quarry. In a second experimental stage, different biocide treatments were tested on this quarry rock to find the best way to avoid the microbial colonization effects identified. Through combined SEM-BSE/DGGE analysis, the efficacy of several biocides against the microorganisms inhabiting the dolostones was assessed after 4 and 16 months treatment. In general, all treatments were effective at reducing around 80% of the lichen cover, although effects on endolithic lithobiontic communities were dependant on how well the rock surface had been mechanically cleaned prior to treatment and gradually disappeared over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Armstrong RA (1982) Competition between three saxicolous species of Parmelia (lichens). New Phytol 90:67–72

    Article  Google Scholar 

  2. Ascaso C, García del Cura MA, De Los RA (2004) Microbial biofilms on carbonate rocks from a Quarry and Monuments in Novelda (Alicante, Spain). In: Clair LS, Seaward M (eds) Biodeterioration of stone surfaces, vol. 6, vol 6. Kluwer Academic Publishers, Netherlands, pp 79–98

    Google Scholar 

  3. Ascaso C, Wierzchos J (1995) Estudio de la interfase talo liquénico-sustrato lítico con Microscopía Electrónica de Barrido en Modo de Electrones Retrodispersados. In: Daniels FJA, Schulz M, Peine J (eds) Contributions to lichenology in honour of Gerhard Follmann Flechten Follmann. The Geobotanical and Phytotaxonomical Study Group. Botanical Institute, University of Cologne, Cologne, pp 43–54

    Google Scholar 

  4. Ascaso C, Wierzchos J, Castello R (1998) Study of the biogenic weathering of calcareous litharenite stones caused by lichen and endolithic microorganisms. Int Biodeterior Biodegrad 42:29–38

    Article  CAS  Google Scholar 

  5. Ascaso C, Wierzchos J, Souza-Egipsy V, De Los RA, Rodrigues JD (2002) In situ evaluation of the biodeteriorating action of microorganisms and the effects of biocides on carbonate rock of the Jeronimos Monastery (Lisbon). Int Biodeterior Biodegrad 49:1–12

    Article  Google Scholar 

  6. Banfield JF, Barker WW, Welch SA, Tauton A (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. P Natl Acad Sci Usa 96:3404–3411

    Article  CAS  Google Scholar 

  7. Bjelland T, Ekman S (2005) Fungal diversity in rock beneath a crustose lichen as revealed by molecular markers. Microb Ecol 49:598–603

    Article  PubMed  Google Scholar 

  8. Cámara B, De Los RA, García del Cura MA, Galvan V, Ascaso C (2008) Dolostone bioreceptivity to fungal colonization. Mater Constr 58:113–124

    Google Scholar 

  9. Cubero OF, Crespo A, Fatehi J, Bridge PD (1999) DNA extraction and PCR amplification method suitable for fresh, herbarium-stored, lichenized, and other fungi. Plant Syst Evol 216:243–249

    Article  CAS  Google Scholar 

  10. De Los RA, Ascaso C (2005) Contributions of in situ microscopy to the current understanding of stone biodeterioration. Int Microbiol 8:181–188

    Google Scholar 

  11. De los Ríos A, Cámara B, Cura del García MA, Rico VJ, Galván V, Ascaso C (2009) Deteriorating effects of lichen and microbial colonization of carbonate building rocks in the Romanesque churches of Segovia (Spain). Sci Total Environ 407:1123–1134

    Article  Google Scholar 

  12. De Los RA, Galvan V, Ascaso C (2004) In situ microscopical diagnosis of biodeterioration processes at the convent of Santa Cruz la Real, Segovia, Spain. Int Biodeterior Biodegrad 54:113–120

    Article  Google Scholar 

  13. De Los RA, Wierzchos J, Ascaso C (2002) Microhabitats and chemical microenvironments under saxicolous lichens growing on granite. Microb Ecol 43:181–188

    Article  Google Scholar 

  14. Dornieden T, Gorbushina AA, Krumbein WE (2000) Biodecay of cultural heritage as a space/time-related ecological situation—an evaluation of a series of studies. Int Biodeterior Biodegrad 46:261–270

    Article  CAS  Google Scholar 

  15. Favero-Longo SE, Borghi A, Tretiach M, Piervittori R (2009) In vitro receptivity of carbonate rocks to endolithic lichen-forming aposymbionts. Mycol Res 113:1216–1227

    Article  PubMed  Google Scholar 

  16. Fort R (1996) Características cromaticas de los materiales en construcción. In: Mingarro F (ed) Degradación y conservación del Patrimonio Arquitectónico. Complutense, Madrid, pp 213–226

    Google Scholar 

  17. Fort R, Bernabéu A, García del Cura MA (2002) Novelda stone: a stone widely used within the Spanish architectural heritage. Mater Constr 266:19–32

    Article  Google Scholar 

  18. Fort R, Fernández-Revuelta B, Varas MJ, Álvarez de Buergo M, Taborda-Duarte M (2008) Influence of anisotropy on the durability of Madrid-region cretaceous dolostone exposed to salt crystallization processes. Mater Constr 58:161–178

    Article  Google Scholar 

  19. Garcia-Vallès M, Urzì C, Leo FD, Salamone P, Vendrell-Saz M (2000) Biological weathering and mineral deposits of the Belevi marble quarry (Ephesus, Turkey). Int Biodeterior Biodegrad 46:221–227

    Article  Google Scholar 

  20. García-Vallés M, Urzí C, Vendrell-Saz M (2002) Weathering processes on the rock surface in natural outcrops: the case of an ancient marble quarry (Belevi, Turkey). Environ Geol 41:889–897

    Article  Google Scholar 

  21. García-Vallés M, Vendrell-Saz M, Molera J, Blazquez F (1998) Interaction of rock and atmosphere: patinas on Mediterranean monuments. Environ Geol 36:137–149

    Article  Google Scholar 

  22. Gardes M, Bruns D (1992) ITS primers with enhanced specificity for basidiomycestes—application to the identification of mycorrhizae and ruts. Mol Ecol 2:113–118

    Article  Google Scholar 

  23. Gleeson DB, Clipson N, Melville K, Gadd GM, McDermott FP (2005) Characterization of fungal community structure on a weathered pegmatitic granite. Microb Ecol 0:1–9

    Google Scholar 

  24. Gómez-Heras M, Fort R (2004) Location of quarries of non traditional stony materials in the architecture of Madrid: the Crypt of Catedral of Santa María la Real de la Almudena. Mater Constr 54:33–48

    Article  Google Scholar 

  25. Guillitte O (1995) Bioreceptivity: a new concept for building ecology studies. Sci Total Environ 167:215–220

    Article  CAS  Google Scholar 

  26. Harris PM (1996) Competitive equivalence in a community of lichens on rock. Oecologia 108:663–668

    Article  Google Scholar 

  27. Hoppert M, Flies C, Pohl W, Günzl B, Schneider J (2004) Colonization strategies of lithobiontic microorganisms on carbonate rocks. Environ Geol 46:421–428

    Article  CAS  Google Scholar 

  28. Hoppert M, König S (2006) The succession of biofilms on building stone and its possible impact on biogenic weathering. In: Fort, Alvarez de Buergo, Gomez-Heras, Vazquez-Calvo (eds) Heritage, weathering and conservation. Taylor and Francis Group, London, pp 311–315

    Google Scholar 

  29. Jimenez-Lopez C, Jroundi F, Pascolini C, Rodriguez-Navarro C, Piñar-Larrubia G, Rodriguez-Gallego M, González-Muñoz MT (2008) Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int Biodeterior Biodegrad 62:352

    Article  CAS  Google Scholar 

  30. Lawrey JD (1991) Biotic interactions in lichen community development: a review. Lichenol 23:205–214

    Google Scholar 

  31. Macedo MF, Miller AZ, Dionisio A, Saiz-Jimenez C (2009) Biodiversity of cyanobacteria and green algae on monuments in the Mediterranean Basin: an overview. Microbiology 155:3476–3490

    Article  PubMed  CAS  Google Scholar 

  32. Menduiña J, Fort R, García del Cura MA, Galán L, Pérez-Soba C, Perez-Monserrat EM, Fernández-Revuelta B, Bernabéu A, Varas MJ,’ (2005) Las piedras utilizadas en la construcción de los bienes de interés cultural de la Comunidad de Madrid anteriores al siglo XIX. Instituto Geológico y Minero de España

  33. Nascimbene J, Salvadori O, Nimis PL (2009) Monitoring lichen recolonization on a restored calcareous statue. Sci Total Environ 407:2420–2426

    Article  PubMed  CAS  Google Scholar 

  34. Nash TH III (1996) Lichen biology. Cambridge University Press, Cambridge

    Google Scholar 

  35. Pentecost A (1980) Aspects of competition in saxicolous lichen communities. Lichenol 12:135–144

    Article  Google Scholar 

  36. Prieto B, Silva B, Aira N, Laiz L (2005) Induction of biofilms on quartz surfaces as a means of reducingthe visual impact of quartz quarries. Biofouling 21:237

    Article  PubMed  CAS  Google Scholar 

  37. Salvadori O (2000) Characterisation of endolithic communities of stone monuments and natural outcrops. In: Ciferri O, Tiano P, Mastromei G (eds) Of microbes and art: the role of microbial communities on the degradation and protection of cultural heritage. Kluwer, Florence, pp 89–102

    Google Scholar 

  38. Scheerer S, OrtegaMorales O, Gaylarde C, Allen I. Laskin SS, Geoffrey MG (2009) Microbial deterioration of stone monuments—an updated overviewadvances in applied microbiology, vol. 66. Academic Press, pp. 97–139

  39. Sert H, Sterflinger K (2009) A new coniosporium species from historical marble monuments. Mycol Prog. doi:10.1007/s11557-009-0643-z

    Google Scholar 

  40. Sert H, Sümbül H, Sterflinger K (2007) Microcolonial fungi from antique marbles in Perge/Side/Termessos (Antalya/Turkey). Anton Leeuw 91:217–227

    Article  CAS  Google Scholar 

  41. Sterflinger K, De Baere R, de Hoog GS, De Wachter R, Krumbein WE, Haase G (1997) Coniosporium perforans and C. apollinis, two new rock-inhabiting fungi isolated from marble in the sanctuary of Delos (Cyclades, Greece). Anton Leeuw 72:349–363

    Article  CAS  Google Scholar 

  42. Sterflinger K, Krumbein WE (1997) Dematiaceous fungi as a major agent for biopitting on Mediterranean marbles and limestones. Geomicrobiol J 14:219–230

    Article  Google Scholar 

  43. Sterflinger K, Sert H (2006) Biodeterioration of buildings and works of art—practical implications on restoration practice. In: Fort, Buergo Ad, Vazquez-Calvo, Gomez-Heras (eds) Heritage, weathering and conservation, vol. 1. Taylor & Francis Group, London, pp 299–304

    Google Scholar 

  44. Tretiach M, Crisafulli P, Imai N, Kashiwadani H, Hee Moon K, Wada H, Salvadori O (2007) Efficacy of a biocide tested on selected lichens and its effects on their substrata. Int Biodeterior Biodegrad 59:44–54

    Article  CAS  Google Scholar 

  45. Tetriach M, Bertuzi S, Salvadori O (2010) Chlorophyll a fluorescence as a practical tool for checking the effects of biocide treatments on endolithic lichens. Int Biodeterior Biodegrad 64:452–460

    Article  Google Scholar 

  46. Warscheid T, Braams J (2000) Biodeterioration of stone: a review. Int Biodeterior Biodegrad 46:343–368

    Article  CAS  Google Scholar 

  47. White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JH, White TJ (eds) PCR protocols—a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  48. Wierzchos J, Ascaso C (1994) Application of back-scattered electron imaging to the study of the lichen–rock interface. J Micros 175:54–59

    Article  Google Scholar 

  49. Woolhouse MEJ, Harmsen R, Fahrig L (1985) On succession in a saxicolous lichen community. Lichenol 17:167–172

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the following persons for their contributions to this study: Fernando Pinto from the Electron Microscopy Service of the Institute of Agricultural Sciences (CSIC) and Teresa Carnota and Maria Jose Malo from the National Museum of Natural Sciences (CSIC) for their technical assistance; Manolo Castillejo and José Manuel Hontoria for polishing the samples for microscopy (MNCN, CSIC); Dr. Silvia Matesanz for help with the statistical analysis; Dr. Sergio Perez-Ortega for help with identifying the lichens; Ana Burton for editorial assistance; and reviewers for their constructive comments. This study was supported by grants GEOMATERIALES (S2009/MAT-1629) from the CAM and CTM2009-122838-C04-03 from the Spanish Ministry of Science and Innovation, and by a predoctoral fellowship (FPI program, BES-2007-15145) awarded by the Spanish Ministry of Science and Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Cámara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cámara, B., De los Ríos, A., Urizal, M. et al. Characterizing the Microbial Colonization of a Dolostone Quarry: Implications for Stone Biodeterioration and Response to Biocide Treatments. Microb Ecol 62, 299–313 (2011). https://doi.org/10.1007/s00248-011-9815-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-011-9815-x

Keywords

Navigation