Skip to main content

Advertisement

Log in

Balance of Neutral and Deterministic Components in the Dynamics of Activated Sludge Floc Assembly

  • Environmental Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Understanding the processes that generate patterns of community structure is a central focus of ecological research. With that aim, we manipulated the structure of bacterial activated sludge to test the influence of the species richness and composition of bacterial communities on the dynamics of activated sludge floc assembly in lab-scale bioreactors. Bacterial community structure was analyzed using denaturing gradient gel electrophoresis of RT-PCR amplified 16S rRNA. Fingerprinting of four parallel reactors, started with the same source communities added in different proportions, converged to patterns that were more similar than expected by chance, suggesting a deterministic selection in floc development. Evidence for neutral dynamics was suggested by the dependence of the rate of replacement of species (bacterial taxa–time relationships) on the number of available species in the source community. Further indication of stochastic dynamics was obtained by the application of the Sloan neutral model for prokaryotes. The fitting of the observed data to the model predictions revealed that the importance of the stochastic component increased with the size of the reservoir of species richness from which the community is drawn. Taken together, the results illustrate how both neutral and deterministic dynamics operate simultaneously in the assembly of the bacterial floc and show that the balance of the two depends on the richness of the source community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Adler PB, Hillerislambers J, Levine JM (2007) A niche for neutrality. Ecol Lett 10:95–104

    Article  PubMed  Google Scholar 

  2. Akarsubasi AT, Eyice O, Miskin I, Head IM, Curtis TP (2009) Effect of sludge age on the bacterial diversity of bench scale sequencing batch reactors. Environ Sci Technol 43:2950–2956

    Article  PubMed  Google Scholar 

  3. Ayarza JM, Guerrero LD, Erijman L (2010) Nonrandom assembly of bacterial populations in activated sludge flocs. Microb Ecol 59:436–444

    Article  PubMed  Google Scholar 

  4. JdC B, Davenport RJ, Donnelly T, Curtis TP (2008) The microbial diversity of laboratory-scale wetlands appears to be randomly assembled. Water Res 42:3182–3190

    Article  Google Scholar 

  5. Bell G (2000) The distribution of abundance in neutral communities. Am Nat 155:606–617

    Article  PubMed  Google Scholar 

  6. Bell T, Ager D, Song JI, Newman JA, Thompson IP, Lilley AK, van der Gast CJ (2005) Larger islands house more bacterial taxa. Science 308:1884

    Article  PubMed  CAS  Google Scholar 

  7. Carrero-Colon M, Nakatsu CH, Konopka A (2006) Microbial community dynamics in nutrient-pulsed chemostats. FEMS Microbiol Ecol 57:1–8

    Article  PubMed  CAS  Google Scholar 

  8. Chase JM (2007) Drought mediates the importance of stochastic community assembly. Proc Natl Acad Sci USA 104:17430–17434

    Article  PubMed  CAS  Google Scholar 

  9. Collins G, Mahony T, O’Flaherty V (2006) Stability and reproducibility of low-temperature anaerobic biological wastewater treatment. FEMS Microbiol Ecol 55:449–458

    Article  PubMed  CAS  Google Scholar 

  10. Cook KL, Garland JL, Layton AC, Dionisi HM, Levine LH, Sayler GS (2006) Effect of microbial species richness on community stability and community function in a model plant-based wastewater processing system. Microb Ecol 52:725–737

    Article  PubMed  CAS  Google Scholar 

  11. Curtis TP, Head IM, Graham DW (2003) Theoretical ecology for engineering biology. Environ Sci Technol 37:64A–70A

    Article  PubMed  Google Scholar 

  12. Curtis TP, Sloan WT (2004) Prokaryotic diversity and its limits: microbial community structure in nature and implications for microbial ecology. Curr Opin Microbiol 7:221–226

    Article  PubMed  Google Scholar 

  13. Daims H, Taylor MW, Wagner M (2006) Wastewater treatment: a model system for microbial ecology. Trends Biotechnol 24:483–489

    Article  PubMed  CAS  Google Scholar 

  14. Enright AM, Collins G, O’Flaherty V (2007) Temporal microbial diversity changes in solvent-degrading anaerobic granular sludge from low-temperature (15 degrees C) wastewater treatment bioreactors. Syst Appl Microbiol 30:471–482

    Article  PubMed  CAS  Google Scholar 

  15. Falk MW, Song KG, Matiasek MG, Wuertz S (2009) Microbial community dynamics in replicate membrane bioreactors - Natural reproducible fluctuations. Water Res 43:842–852

    Article  PubMed  CAS  Google Scholar 

  16. Fernandez A, Huang S, Seston S, Xing J, Hickey R, Criddle C, Tiedje J (1999) How stable is stable? Function versus community composition. Appl Environ Microbiol 65:3697–3704

    PubMed  CAS  Google Scholar 

  17. Ge Y, He JZ, Zhu YG, Zhang JB, Xu Z, Zhang LM, Zheng YM (2008) Differences in soil bacterial diversity: driven by contemporary disturbances or historical contingencies? ISME J 2:254–264

    Article  PubMed  CAS  Google Scholar 

  18. Gentile ME, Jessup CM, Nyman JL, Criddle CS (2007) Correlation of functional instability and community dynamics in denitrifying dispersed-growth reactors. Appl Environ Microbiol 73:680–690

    Article  PubMed  CAS  Google Scholar 

  19. Gentile ME, Lynn Nyman J, Criddle CS (2007) Correlation of patterns of denitrification instability in replicated bioreactor communities with shifts in the relative abundance and the denitrification patterns of specific populations. ISME J 1:714–728

    Article  PubMed  CAS  Google Scholar 

  20. Gravel D, Canham CD, Beaudet M, Messier C (2006) Reconciling niche and neutrality: the continuum hypothesis. Ecol Lett 9:399–409

    Article  PubMed  Google Scholar 

  21. Head IM, Saunders JR, Pickup RW (1998) Microbial evolution, diversity, and ecology: a decade of Ribosomal RNA analysis of uncultivated microorganisms. Microb Ecol 35:1–21

    Article  PubMed  CAS  Google Scholar 

  22. Hong H, Pruden A, Reardon KF (2007) Comparison of CE-SSCP and DGGE for monitoring a complex microbial community remediating mine drainage. J Microbiol Methods 69:52–64

    Article  PubMed  CAS  Google Scholar 

  23. Horner-Devine MC, Carney KM, Bohannan BJ (2004) An ecological perspective on bacterial biodiversity. Proc Biol Sci 271:113–122

    Article  PubMed  Google Scholar 

  24. Hoshino T, Terahara T, Yamada K, Okuda H, Suzuki I, Tsuneda S, Hirata A, Inamori Y (2006) Long-term monitoring of the succession of a microbial community in activated sludge from a circulation flush toilet as a closed system. FEMS Microbiol Ecol 55:459–470

    Article  PubMed  CAS  Google Scholar 

  25. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  26. Kaewpipat K, Grady CP Jr (2002) Microbial population dynamics in laboratory-scale activated sludge reactors. Water Sci Technol 46:19–27

    PubMed  CAS  Google Scholar 

  27. Kampfer P, Erhart R, Beimfohr C, Bohringer J, Wagner M, Amann R (1996) Characterization of bacterial communities from activated sludge: culture-dependent numerical identification versus in situ identification using group- and genus-specific rRNA-targeted oligonucleotide probes. Microb Ecol 32:101–121

    Article  PubMed  Google Scholar 

  28. Konopka A, Carrero-Colon M, Nakatsu CH (2007) Community dynamics and heterogeneities in mixed bacterial communities subjected to nutrient periodicities. Environ Microbiol 9:1584–1590

    Article  PubMed  CAS  Google Scholar 

  29. Langenheder S, Lindstrom ES, Tranvik LJ (2006) Structure and function of bacterial communities emerging from different sources under identical conditions. Appl Environ Microbiol 72:212–220

    Article  PubMed  CAS  Google Scholar 

  30. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for large scale community ecology? Ecol Lett 7:601–613

    Article  Google Scholar 

  31. Loreau M (2000) Biodiversity and ecosystem functioning: recent theoretical advances. Oikos 91:3–17

    Article  Google Scholar 

  32. Lozada M, Basile L, Erijman L (2007) Impact of non-ionic surfactant on the long-term development of lab-scale-activated sludge bacterial communities. Res Microbiol 158:712–717

    Article  PubMed  CAS  Google Scholar 

  33. Lozada M, Figuerola EL, Itria RF, Erijman L (2006) Replicability of dominant bacterial populations after long-term surfactant-enrichment in lab-scale activated sludge. Environ Microbiol 8:625–638

    Article  PubMed  CAS  Google Scholar 

  34. Manefield M, Whiteley A, Curtis T, Watanabe K (2007) Influence of sustainability and immigration in assembling bacterial populations of known size and function. Microb Ecol 53:348–354

    Article  PubMed  Google Scholar 

  35. McGuinness LM, Salganik M, Vega L, Pickering KD, Kerkhof LJ (2006) Replicability of bacterial communities in denitrifying bioreactors as measured by PCR/T-RFLP analysis. Environ Sci Technol 40:509–515

    Article  PubMed  CAS  Google Scholar 

  36. Muyzer G, Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Leeuwenhoek 73:127–141

    Article  PubMed  CAS  Google Scholar 

  37. Nadarajah N, Grant Allen D, Fulthorpe RR (2007) Effects of transient temperature conditions on the divergence of activated sludge bacterial community structure and function. Water Res 41:2563–2571

    Article  PubMed  CAS  Google Scholar 

  38. Palacios C, Zettler E, Amils R, Amaral-Zettler L (2008) Contrasting microbial community assembly hypotheses: a reconciling tale from the Rio Tinto. PLoS ONE 3:e3853

    Article  PubMed  Google Scholar 

  39. Pender S, Toomey M, Carton M, Eardly D, Patching JW, Colleran E, O’Flaherty V (2004) Long-term effects of operating temperature and sulphate addition on the methanogenic community structure of anaerobic hybrid reactors. Water Res 38:619–630

    Article  PubMed  CAS  Google Scholar 

  40. Possemiers S, Verthé K, Uyttendaele S, Verstraete W (2004) PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 49:495–507

    Article  PubMed  CAS  Google Scholar 

  41. Ramette A, Tiedje JM (2007) Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb Ecol 53:197–207

    Article  PubMed  Google Scholar 

  42. Raup DM, Crick RE (1979) Measurement of faunal similarity in paleontology. J Paleontol 53:1213–1227

    Google Scholar 

  43. Redford AJ, Fierer N (2009) Bacterial succession on the leaf surface: a novel system for studying successional dynamics. Microb Ecol 58:189–198

    Article  PubMed  Google Scholar 

  44. Riviére D, Desvignes V, Pelletier E, Chaussonnerie S, Guermazi S, Weissenbach Li T, Camacho P, Sghir A (2009) Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3(6):700–714

    Article  PubMed  Google Scholar 

  45. Roeselers G, Zippel B, Staal M, van Loosdrecht M, Muyzer G (2006) On the reproducibility of microcosm experiments—different community composition in parallel phototrophic biofilm microcosms. FEMS Microbiol Ecol 58:169–178

    Article  PubMed  CAS  Google Scholar 

  46. Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, Cambridge

    Book  Google Scholar 

  47. Rowan AK, Snape JR, Fearnside D, Barer MR, Curtis TP, Head IM (2003) Composition and diversity of ammonia-oxidising bacterial communities in wastewater treatment reactors of different designtreating identical wastewater. FEMS Microbiol Ecol 43:195–206

    Article  PubMed  CAS  Google Scholar 

  48. Saikaly PE, Stroot PG, Oerther DB (2005) Use of 16S rRNA gene terminal restriction fragment analysis to assess the impact of solids retention time on the bacterial diversity of activated sludge. Appl Environ Microbiol 71:5814–5822

    Article  PubMed  CAS  Google Scholar 

  49. Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8:732–740

    Article  PubMed  Google Scholar 

  50. Sloan WT, Woodcock S, Lunn M, Head IM, Curtis TP (2007) Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb Ecol 53:443–455

    Article  PubMed  Google Scholar 

  51. Smalla K, Oros-Sichler M, Milling A, Heuer H, Baumgarte S, Becker R, Neuber G, Kropf S, Ulrich A, Tebbe CC (2007) Bacterial diversity of soils assessed by DGGE, T-RFLP and SSCP fingerprints of PCR-amplified 16S rRNA gene fragments: do the different methods provide similar results? J Microbiol Methods 69:470–479

    Article  PubMed  CAS  Google Scholar 

  52. Suzuki MT, Taylor LT, DeLong EF (2000) Quantitative analysis of small-subunit rRNA genes in mixed microbial populations via 5′-nuclease assays. Appl Environ Microbiol 66:4605–4614

    Article  PubMed  CAS  Google Scholar 

  53. Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet J, Ugarte E, Muñoz-Tamayo R, Paslier DLE, Nalin R, Dore J, Leclerc M (2009) Towards the human intestinal microbiota phylogenetic core. Environ Microbiol 11:2574–2784

    Article  PubMed  Google Scholar 

  54. van der Gast CJ, Ager D, Lilley AK (2008) Temporal scaling of bacterial taxa is influenced by both stochastic and deterministic ecological factors. Environ Microbiol 10:1411–1418

    Article  PubMed  Google Scholar 

  55. Wagner M, Loy A (2002) Bacterial community composition and function in sewage treatment systems. Curr Opin Biotechnol 13:218–227

    Article  PubMed  CAS  Google Scholar 

  56. White EP, Adler PB, Lauenroth WK, Gill RA, Greenberg D, Kaufman DM, Rassweiler A, Rusak JA, Smith MD, Steinbeck JR, Waide RB, Yao J (2006) A comparison of the species/time relationship across ecosystems and taxonomic groups. Oikos 112:185–195

    Article  Google Scholar 

  57. Wittebolle L, Van Vooren N, Verstraete W, Boon N (2009) High reproducibility of ammonia-oxidizing bacterial communities in parallel sequential batch reactors. J Appl Microbiol 107:385–394

    Article  PubMed  CAS  Google Scholar 

  58. Woodcock S, van der Gast CJ, Bell T, Lunn M, Curtis TP, Head IM, Sloan WT (2007) Neutral assembly of bacterial communities. FEMS Microbiol Ecol 62:171–180

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Mario Aguilar (UNLP) for the use of GelCompar software and Dr. Thomas Jovin for help with the calculations based on Mathematica. This work was partially funded by a grant from FONCyT (PICT 2005 No. 31705). L.E. is a career member of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Erijman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Average operating conditions and performance of the full-scale wastewater treatment plants, which served as inocula for the bench-scale experiments. (DOC 35 kb)

ESM 2

(JPEG 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayarza, J.M., Erijman, L. Balance of Neutral and Deterministic Components in the Dynamics of Activated Sludge Floc Assembly. Microb Ecol 61, 486–495 (2011). https://doi.org/10.1007/s00248-010-9762-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-010-9762-y

Keywords

Navigation